Nothing
#' The quantile function for Discrete Transmuted Generalized Inverse Weibull (DTGIW) distribution.
#'
#' This function calculated the quantile values of the DTGIW distribution.
#'
#' The R script calculated the quantile values of the DTGIW distribution is shown based on the research paper in references.
#'
#' @param p vector of probabilities
#' @param alpha shape parameter#1.
#' @param beta scale parameter.
#' @param lambda shape pameter#2.
#' @param theta the transmuted parameter.
#' @param lower.tail logical; if TRUE (default), probabilities are Prob of X less than or equal to x. Otherwise, Prob of X greater than x.
#' @param log.p logical(TRUE or FALSE); if log.p=FALSE, then return the cdf; if log.p=TRUE, then return the natural logarithms of the cdf.
#'
#' @references Atchanut Rattanalertnusorn and Sirinapa Aryuyuen (2021).
#' The zero-truncated discrete transmuted generalized inverse Weibull distribution and its applications,
#' Songklanakarin Journal of Science and Technology (SJST), Volume 43 No.4 (July - August 2021), pp. 1140 - 1151. DOI: 10.14456/sjst-psu.2021.149.
#'
#' @return the quantile values of DTGIW distribution
#' @export
#'
#' @examples
#' x <- c(0:10)
#' p<- pDTGIW(x,3.45,0.7,1.05,0)
#' qDTGIW(p,3.45,0.7,1.05,0)
#'
qDTGIW <- function(p,alpha,beta,lambda,theta,lower.tail = TRUE, log.p = FALSE){
n<-length(p)
x<-numeric(n)
for (i in 1:n){
k<-0
if(p[i]>pDTGIW(k,alpha,beta,lambda,theta)){
while( p[i]>pDTGIW(k,alpha,beta,lambda,theta)) #cdf of DTGIW
{
k<-k+1
}
}
x[i]<-k
}
#return(x)
if(lower.tail==TRUE & log.p==FALSE){
return(x)
}else if(lower.tail==TRUE & log.p==TRUE){
return(log(x))
}else if(lower.tail==FALSE & log.p==FALSE){
return(x)
}else if(lower.tail==FALSE & log.p==TRUE){
return(log(x))
}
} #end qDTGIW
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.