Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
eval = FALSE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
# library(dtreg)
## -----------------------------------------------------------------------------
# dt <- dtreg::load_datatype("https://doi.org/21.T11969/b9335ce2c99ed87735a6")
## -----------------------------------------------------------------------------
# names(dt)
## -----------------------------------------------------------------------------
# dtreg::show_fields(dt$group_comparison())
## -----------------------------------------------------------------------------
# labelled_inst <- dt$group_comparison(label = "my_test_results")
## -----------------------------------------------------------------------------
# method_url <- dt$software_method(has_support_url = "https://search.r-project.org/R/refmans/stats/html/00Index.html")
## -----------------------------------------------------------------------------
# method_line <-
# dt$software_method(is_implemented_by = "stats::wilcox.test(var_1, var_2)")
## -----------------------------------------------------------------------------
# method_lines <-
# dt$software_method(is_implemented_by = paste("first line of code",
# "second line of code",
# sep = "\n"))
## -----------------------------------------------------------------------------
# dimensions <- dt$matrix_size(number_of_rows = 100,
# number_of_columns = 5)
## -----------------------------------------------------------------------------
# my_dataframe <- data.frame(W = 44.5, p = 2.2e-16)
# output_dataframe <- dt$data_item(source_table = my_dataframe)
## -----------------------------------------------------------------------------
# class(my_dataframe$W)
## -----------------------------------------------------------------------------
# library(sets)
# my_tuple <- sets::tuple(my_dataframe, "the Wilcoxon test results")
# output_tuple <- dt$data_item(source_table = my_tuple)
## -----------------------------------------------------------------------------
# var_1 <- dt$component(label = "var_1")
# var_2 <- dt$component(label = "var_2")
# two_vars <- dt$group_comparison(targets = list(var_1, var_2))
## -----------------------------------------------------------------------------
# two_vars <-
# dt$group_comparison(targets = list(dt$component(label = "var_1"),
# dt$component(label = "var_2")))
## -----------------------------------------------------------------------------
# labelled_inst_json <- dtreg::to_jsonld(labelled_inst)
## -----------------------------------------------------------------------------
# write(labelled_inst_json, "labelled_inst_file.json")
## -----------------------------------------------------------------------------
# attach(iris)
# virg <- iris[iris$Species == "virginica", ]
# vers <- iris[iris$Species == "versicolor", ]
# wilc <- stats::wilcox.test(vers$Petal.Length, virg$Petal.Length)
# regr <- summary(stats::lm(Petal.Length ~ Petal.Width, data = virg))
## -----------------------------------------------------------------------------
# dt_wilc <-
# dtreg::load_datatype("https://doi.org/21.T11969/b9335ce2c99ed87735a6")
# dt_regr <-
# dtreg::load_datatype("https://doi.org/21.T11969/286991b26f02d58ee490")
# dt_all <-
# dtreg::load_datatype("https://doi.org/21.T11969/feeb33ad3e4440682a4d")
## -----------------------------------------------------------------------------
# wilc_result <- data.frame(W = 44.5,
# p = 2.2e-16,
# stringsAsFactors = FALSE)
# rownames(wilc_result) <- "value"
## -----------------------------------------------------------------------------
# regr_coeff <- data.frame(regr$coefficients)
# regr_model <-
# data.frame(
# F = 5.557,
# numdf = 1,
# dendf = 48,
# p = 0.02254,
# r.squared = 0.1038,
# adj.r.squared = 0.08508,
# stringsAsFactors = FALSE
# )
# rownames(regr_model) <- "value"
## -----------------------------------------------------------------------------
# inst_1 <- dt_wilc$data_item()
# json_1 <- dtreg::to_jsonld(inst_1)
# inst_2 <- dt_regr$data_item()
# json_2 <- dtreg::to_jsonld(inst_2)
# identical(json_1, json_2)
## -----------------------------------------------------------------------------
# data_iris <- dt_wilc$data_item(
# label = "iris",
# has_characteristic = dt_wilc$matrix_size(number_of_rows = 150,
# number_of_columns = 5)
# )
# software <- dt_wilc$software(label = "R",
# versioninfo = "4.3.1")
# soft_library <- dt_wilc$software_library(
# label = "stats",
# part_of = software,
# versioninfo = "4.3.1",
# has_support_url = "https://search.r-project.org/R/refmans/stats/html/00Index.html"
# )
# petal_length <- dt_wilc$component(label = "Petal.Length")
## -----------------------------------------------------------------------------
# soft_method_wilc <-
# dt_wilc$software_method(label = "stats::wilcoxon",
# part_of = soft_library,
# is_implemented_by =
# "stats::wilcox.test(vers$Petal.Length, virg$Petal.Length)")
# output_wilc <- dt_wilc$data_item(source_table = wilc_result)
# instance_wilc <- dt_wilc$group_comparison(
# label = "Wilcoxon Petal.Length, virg vs vers",
# executes = soft_method_wilc,
# has_input = data_iris,
# targets = petal_length,
# has_output = output_wilc
# )
## -----------------------------------------------------------------------------
# soft_method_regr <-
# dt_regr$software_method(label = "stats::lm",
# part_of = soft_library,
# is_implemented_by =
# "summary(stats::lm(Petal.Length ~ Petal.Width, data = virg))")
# output_regr <-
# dt_regr$data_item(source_table = list(regr_coeff, regr_model))
# instance_regr <- dt_regr$regression_analysis(
# label = "SLR Petal.Length vs Petal.Width, virg",
# executes = soft_method_regr,
# has_input = data_iris,
# targets = petal_length,
# has_output = output_regr
# )
## -----------------------------------------------------------------------------
# instance_all <- dt_all$data_analysis(
# label = "my_data_analysis",
# is_implemented_by = "my_github_link",
# has_part = list(instance_wilc, instance_regr)
# )
## -----------------------------------------------------------------------------
# instance_all_json <- dtreg::to_jsonld(instance_all)
# write(instance_all_json, "instance_all_file.json")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.