Nothing
#' DVI dataset: Generational trio
#'
#' A proof-of-concept dataset involving three missing members (child, father,
#' grandfather) of a single family. With the given data, stepwise victim
#' identification fails to find the correct solution, while joint identification
#' succeeds.
#'
#' @format A `dviData` object with the following content:
#'
#' * `pm`: A list of 3 singletons (victims).
#'
#' * `am`: A pedigree with three missing persons and one typed reference
#' individual.
#'
#' * `missing`: A vector containing the names of the missing persons.
#'
#' @examples
#' example1
#'
#' plotDVI(example1, marker = 1)
#'
#' jointDVI(example1)
#'
"example1"
#' DVI dataset: Two reference families
#'
#' A small DVI example with three victims, and three missing persons from two reference
#' families
#'
#' @format A `dviData` object with the following content:
#'
#' * `pm`: A list of 3 singletons (victims).
#'
#' * `am`: A list of 2 pedigrees with three missing persons and one typed reference
#' individual.
#'
#' * `missing`: A vector containing the names of the missing persons.
#'
#' @examples
#' example2
#'
#' plotDVI(example2, marker = 1, nrowPM = 3)
#'
#' jointDVI(example2)
#'
"example2"
#' DVI dataset: Family of fire victims
#'
#' A family with three missing persons after a fire, and one reference
#' individual. This example is featured in the GLR paper (Egeland & Vigeland,
#' 2024).
#'
#' @format A `dviData` object with the following content:
#'
#' * `pm`: A list of 3 singletons (victims).
#'
#' * `am`: A pedigree with three missing persons and one typed reference
#' individual.
#'
#' * `missing`: A vector containing the names of the missing persons.
#'
#' @examples
#' fire
#'
#' plotDVI(fire, marker = 1)
#'
#' jointDVI(fire)
#'
"fire"
#' DVI dataset: Simulated plane crash
#'
#' A simulated dataset based on Exercise 3.3 in Egeland et al. "Relationship
#' Inference with Familias and R" (2015).
#'
#' The 15 markers are `CSF1PO`, `D13S317`, `D16S539`, `D18S51`, `D21S11`,
#' `D3S1358`, `D5S818`, `D7S820`, `D8S1179`, `FGA`, `PENTA_D`, `PENTA_E`,
#' `TH01`, `TPOX`, and `VWA`.
#'
#' Source code for the simulation, and a file containing the allele frequencies,
#' can be found in the `data-raw` folder of the GitHub repository:
#' https://github.com/magnusdv/dvir.
#'
#' @format A `dviData` object with the following content:
#'
#' * `pm`: A list of 8 female singletons (victims).
#'
#' * `am`: A list of 5 pedigrees, each with one missing member and one
#' genotyped member.
#'
#' * `missing`: A vector containing the names of the missing persons.
#'
#' @examples
#' planecrash
#'
#' # plotDVI(planecrash)
#'
#' # Markers and allele frequencies
#' db = pedtools::getFreqDatabase(planecrash$pm)
#' db
#'
"planecrash"
#' DVI dataset: A large reference pedigree
#'
#' DVI dataset based loosely on the ICMP 2017 workshop material
#' https://www.few.vu.nl/~ksn560/Block-III-PartI-KS-ISFG2017.pdf (page 18).
#' There are 3 female victims, 2 male victims and 6 missing persons of both
#' sexes. We have renamed the individuals and simulated data for 13 CODIS
#' markers (see Details).
#'
#' The 13 markers are, in order: `CSF1PO`, `D3S1358`, `D5S818`,`D7S820`,
#' `D8S1179`, `D13S317`, `D16S539`, `D18S51`, `D21S11`, `FGA`, `TH01`, `TPOX`,
#' and `vWA`.
#'
#' Source code for the simulation, and a file containing the allele frequencies,
#' can be found in the `data-raw` folder of the GitHub repository:
#' https://github.com/magnusdv/dvir.
#'
#' @format A `dviData` object with the following content:
#'
#' * `pm`: A list of 5 singletons (victims).
#'
#' * `am`: A reference pedigree with 6 genotyped members and 12 missing
#' persons.
#'
#' * `missing`: A vector containing the names of the missing persons.
#'
#'
#' @examples
#' icmp
#'
#' # plotDVI(icmp)
#'
#' # Markers and allele frequencies
#' db = pedtools::getFreqDatabase(icmp$pm)
#' db
#'
"icmp"
#' DVI dataset: Family grave
#'
#' Family grave data in Kling et al. (2021) "Mass Identifications: Statistical
#' Methods in Forensic Genetics". There are 5 female victims and 3 male victims.
#' There is one reference family with 5 missing females and 3 missing males.
#' There are 23 markers, no mutation model.
#'
#'
#' @format A `dviData` object with the following content:
#'
#' * `pm`: A list of 8 singletons (victims).
#'
#' * `am`: A pedigree with 8 missing persons.
#'
#' * `missing`: A vector containing the names of the missing persons.
#'
#' @examples
#' grave
#'
#' # plotDVI(grave, marker = 1)
#'
#' # jointDVI(grave)
#'
"grave"
#' Data used in the book Kling et al. (2021)
#'
#' Data used in last example of Chapter 4 in Kling et al. (2021) "Mass
#' Identifications: Statistical Methods in Forensic Genetics". There are 2
#' female victims, 2 male victims. There are four reference families with 2
#' missing females and 2 missing males. There are 21 markers. An `equal mutation
#' mode with rate 0.005 is specified.
#'
#'
#' @format A `dviData` object with the following content:
#'
#' * `pm`: A list of 4 singletons (victims).
#'
#' * `am`: A list of 3 pedigrees.
#'
#' * `missing`: A vector containing the names of the missing persons.
#'
#' @examples
#' KETPch4
#'
#' plotDVI(KETPch4, nrowPM = 4)
#'
#'
"KETPch4"
#' Data used in the book Kling et al. (2021)
#'
#' Data used in Exercise 4.9.7 in Kling et al. (2021) "Mass Identifications:
#' Statistical Methods in Forensic Genetics". There are 3 female victims and 3
#' reference families with 3 missing females. There are 23 markers, equal
#' mutation model, rate 0.001.
#'
#'
#' @format A `dviData` object with the following content:
#'
#' * `pm`: A list of 3 singletons (victims).
#'
#' * `am`: A list of 3 pedigrees.
#'
#' * `missing`: A vector containing the names of the missing persons.
#'
#' @examples
#' plotDVI(KETPex497, nrowPM = 3)
#'
#'
"KETPex497"
#' Data used in the book Kling et al. (2021)
#'
#' Data used in Exercise 4.9.8 in Kling et al. (2021) "Mass Identifications:
#' Statistical Methods in Forensic Genetics". There are 2 female victims and 1
#' male. There is one reference family with 2 missing females and one missing
#' male. There are 16 markers, equal mutation model, rate 0.001.
#'
#'
#' @format A `dviData` object with the following content:
#'
#' * `pm`: A list of 3 singletons (victims).
#'
#' * `am`: A list of 1 pedigree.
#'
#' * `missing`: A vector containing the names of the missing persons.
#'
#' @examples
#'
#' plotDVI(KETPex498, nrowPM = 3)
#'
"KETPex498"
#' Data used in the book Kling et al. (2021)
#'
#' Data used in Example 4.8.1 in Kling et al. (2021) "Mass Identifications:
#' Statistical Methods in Forensic Genetics". The victims are V1 and V2, both
#' females. There is one reference family with 2 missing persons, both females.
#' There are 21 markers, no mutation model.
#'
#' @format A `dviData` object with the following content:
#'
#' * `pm`: A list of 2 singletons (victims).
#'
#' * `am`: A list of 1 pedigree.
#'
#' * `missing`: A vector containing the names of the missing persons.
#'
#' @examples
#' plotDVI(KETPex481, marker = 1)
#'
"KETPex481"
#' Dataset: Exclusion example
#'
#' This data is based on a real case, but pedigrees have been changed and
#' marker data simulated to preserve anonymity.
#'
#' @format A `dviData` object with the following content:
#'
#' * `pm`: A list of 16 singletons (male victims).
#'
#' * `am`: A list of 15 pedigrees, each with one missing person
#'
#' * `missing`: A vector containing the names of the 15 missing persons.
#'
#' @examples
#'
#' exclusionExample
#'
"exclusionExample"
#' Dataset: Symmetry examples
#'
#' A toy DVI dataset illustrating various forms of undecidability due to
#' symmetries in the solutions.
#'
#' @format A `dviData` object with the following content:
#'
#' * `pm`: A list of 5 singletons (male victims).
#'
#' * `am`: A list of 3 pedigrees
#'
#' * `missing`: A character vector of length 5, naming the missing persons.
#'
#' @examples
#'
#' symmetricSibs
#'
"symmetricSibs"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.