| dyngen | R Documentation |
A toolkit for generating synthetic single cell data.
initialise_model(): Define and store settings for all following steps. See each of the sections below for more information.
Use a predefined backbone:
list_backbones()
backbone_bifurcating()
backbone_bifurcating_converging()
backbone_bifurcating_cycle()
backbone_bifurcating_loop()
backbone_branching()
backbone_binary_tree()
backbone_consecutive_bifurcating()
backbone_trifurcating()
backbone_converging()
backbone_cycle()
backbone_cycle_simple()
backbone_linear()
backbone_linear_simple()
backbone_disconnected()
Create a custom backbone:
backbone()
bblego()
bblego_linear()
bblego_branching()
bblego_start()
bblego_end()
Visualise the backbone:
plot_backbone_modulenet()
plot_backbone_statenet()
generate_tf_network(): Generate a transcription factor network from the backbone
tf_network_default(): Parameters for configuring this step
generate_feature_network(): Generate a target network
feature_network_default(): Parameters for configuring this step
plot_feature_network(): Visualise the gene network
generate_kinetics(): Generate the gene kinetics
kinetics_default(), kinetics_random_distributions(): Parameters for configuring this step
generate_gold_standard(): Simulate the gold standard backbone, used for mapping to cell states afterwards
gold_standard_default(): Parameters for configuring this step
plot_gold_mappings(): Visualise the mapping of the simulations to the gold standard
plot_gold_simulations(): Visualise the gold standard simulations using the dimred
plot_gold_expression(): Visualise the expression of the gold standard over simulation time
generate_cells(): Simulate the cells based on its GRN
simulation_default(): Parameters for configuring this step
simulation_type_wild_type(), simulation_type_knockdown(): Used for configuring the type of simulation
kinetics_noise_none(), kinetics_noise_simple(): Different kinetics randomisers to apply to each simulation
plot_simulations(): Visualise the simulations using the dimred
plot_simulation_expression(): Visualise the expression of the simulations over simulation time
generate_experiment(): Sample cells and transcripts from experiment
list_experiment_samplers(), experiment_snapshot(), experiment_synchronised(): Parameters for configuring this step
simtime_from_backbone(): Determine the simulation time from the backbone
plot_experiment_dimred(): Plot a dimensionality reduction of the final dataset
as_dyno(), wrap_dataset(): Convert a dyngen model to a dyno dataset
as_anndata(): Convert a dyngen model to an anndata dataset
as_sce(): Convert a dyngen model to a SingleCellExperiment dataset
as_seurat(): Convert a dyngen model to a Seurat dataset
generate_dataset(): Run through steps 2 to 8 with a single function
plot_summary(): Plot a summary of all dyngen simulation steps
example_model: A (very) small toy dyngen model, used for documentation and testing purposes
realcounts: A set of real single-cell expression datasets, to be used as reference datasets
realnets: A set of real gene regulatory networks, to be sampled in step 3
dyngen: This help page
get_timings(): Extract execution timings for each of the dyngen steps
combine_models(): Combine multiple dyngen models
rnorm_bounded(): A bounded version of rnorm()
runif_subrange(): A subrange version of runif()
model <- initialise_model( backbone = backbone_bifurcating() ) model <- model %>% generate_tf_network() %>% generate_feature_network() %>% generate_kinetics() %>% generate_gold_standard() %>% generate_cells() %>% generate_experiment() dataset <- wrap_dataset(model, format = "dyno") # format can also be set to "sce", "seurat", "anndata" or "list" # library(dynplot) # plot_dimred(dataset)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.