par.eCAR.Leroux | R Documentation |
par.eCAR.Leroux
is the main function used to fit the parametric Leroux CAR model specified in the spectral domain.
par.eCAR.Leroux(y, x, W,
E=NULL,
C=NULL,
model="Gaussian",
joint_prior_lamx_lamz = FALSE,
lamx.fix.val = NULL,
sig2x.fix.val = NULL,
mb=0,s2b=10,
mg=0,s2g=10.0,
alamx=1, blamx=1,
alamz=1, blamz=1,
asig=1, bsig=1,
atau=1, btau=1,
asigx=1, bsigx=1,
mb0=0,s2b0=100,
me=0,s2e=100,
mx=0,s2x=100,
tau_cand_sd = 1,
sig2_cand_sd = 1,
draws=10000, burn=5000, thin=5,
verbose=TRUE)
y |
response vector |
x |
covariate vector for which casual effect is desired |
W |
neighborhood matrix comprised of zeros and ones |
E |
This argument is ignored if model is Gaussian. For other models it takes on the following:
|
C |
design matrix for the covariates that are included as controls |
model |
Specifies the likelihood or data model. Options are "Gaussian", "Poisson", "Binomial", "Negative Binomial" |
joint_prior_lamx_lamz |
Logical. If TRUE, then a uniform prior on space such that lamz > lamx. If FALSE, independent beta priors are used. |
lamx.fix.val |
If a value is supplied then lambda_x is not updated in the MCMC algorithm, but rather treated as the fixed known supplied value |
sig2x.fix.val |
If a value is supplied then sigma2_x is not updated in the MCMC algorithm, but rather treated as the fixed known supplied value |
mb |
prior mean for beta. default is 0. |
s2b |
prior variance for beta. default is 10 |
mg |
prior mean for gamma, where gamma = rho*(sigz/sigx). default is 0. |
s2g |
prior variance for, gamma), where gamma = rho*(sigz/sigx). default is 10 |
alamx |
prior shape1 parameter for lam.x, default is 1. Only used if joint_prior_lamx_lamz = FALSE |
blamx |
prior shape2 parameter for lam.x, default is 1. Only used if joint_prior_lamx_lamz = FALSE |
alamz |
prior shape1 parameter for lam.z, default is 1. Only used if joint_prior_lamx_lamz = FALSE |
blamz |
prior shape2 parameter for lam.z, default is 1. Only used if joint_prior_lamx_lamz = FALSE |
asig |
prior shape parameter for sigma2, default is 1. Only used if model is Gaussian |
bsig |
prior scale parameter for sigma2, default is 1. Only used if model is Gaussian |
atau |
prior shape parameter for tau, where tau = sigma2.z*(1-rho^2). default is 1 |
btau |
prior scale parameter for tau, where tau = sigma2.z*(1-rho^2). default is 1 |
asigx |
prior shape parameter for sigma2.x, default is 1 |
bsigx |
prior scale parameter for sigma2.x, default is 1 |
mb0 |
prior mean parameter for beta0, default is 0. Only used if model is not Gaussian |
s2b0 |
prior variance parameter for beta0, default is 100. Only used if model is not Gaussian |
me |
prior mean parameter for eta, default is 0. Only used if C is not NULL |
s2e |
prior variance parameter for eta, default is 100. Only used if C is not NULL |
mx |
prior mean parameter for xi, default is 0. Only used for negative binomial model |
s2x |
prior variance parameter for eta, default is 100. Only used for negative binomial model |
tau_cand_sd |
standard deviation for candidate density in Metropolis step for tau. Default is 1 |
sig2_cand_sd |
standard deviation for candidate density in Metropolis step for sig2. Default is 1. Only used if model is Gaussian |
draws |
number of MCMC iterates to be collected. default is 10000 |
burn |
number of MCMC iterates discared as burn-in. default is 5000 |
thin |
number by which the MCMC chain is thinned. default is 5 |
verbose |
If TRUE, then details associated with data being fit are printed to screen along with MCMC iterate counter |
The function returns an eCAR
object which is a list that contains the following
data_model |
Character indicating which model was fit |
beta_omega |
Matrix that contains respectively, the posterior mean lower and upper quantiles of the (spatial scale)-varying beta at each omega value (for the non Gaussian cases it is the exponentiated beta). |
posterior_draws |
List containing posterior draws of the following parameters
|
DIC |
Not available from parametric model yet |
regrcoef |
Not available from parametric model yet |
Guan, Y; Page, G.L.; Reich, B.J.; Ventrucci, M.; Yang, S; "A spectral adjustment for spatial confounding" <arXiv:2012.11767>
# Our R-package
library(eCAR)
data(lipcancer)
W <- lipcancer$neighborhood.Matrix
M <- diag(apply(W,1,sum))
R <- M-W
e.dec <- eigen(R)
e.val <- e.dec$values
D.eigval = diag(e.val)
Y <- lipcancer$data$observed
X <- lipcancer$data$pcaff
E <- lipcancer$data$expected
set.seed(101)
fit1 <- par.eCAR.Leroux(y=Y, x=X, W=W, E=E, C=NULL, model="Poisson",
draws=10000, burn=5000, thin=1, verbose=FALSE,
joint_prior_lamx_lamz=FALSE)
plot(fit1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.