Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----eval=FALSE---------------------------------------------------------------
# install.packages("eDITH")
## ----eval=FALSE---------------------------------------------------------------
# devtools::install_github("lucarraro/eDITH")
## ----overview, echo=FALSE, fig.cap="Flowchart for the choice of covariates used to fit the eDITH model.", out.width = '90%'----
knitr::include_graphics("flowchart_cov.png")
## ----eval=FALSE---------------------------------------------------------------
# # Extract river from DEM
# river <- rivnet::extract_river(outlet=c(637478,237413),
# EPSG=21781, #CH1903/LV03 coordinate system
# ext=c(6.2e5,6.6e5,2e5,2.5e5),
# z=9)
#
# # Aggregate river - default thrA and maxReachLength = 2500 m
# river <- rivnet::aggregate_river(river, maxReachLength = 2500)
#
# # Hydraulic data: width = 8 m, discharge = 15 m3/s at the outlet
# hydrodata <- data.frame(data = c(8, 15),
# type = c("w", "Q"),
# node = river$AG$outlet*c(1, 1))
#
# # Assign hydraulic variables across the river network
# river <- rivnet::hydro_river(hydrodata, river)
#
# # Attribute landcover classes as covariates
# r1 <- terra::rast(system.file("extdata/landcover.tif",
# package = "rivnet"))
# river <- rivnet::covariate_river(r1, river)
#
## ----eval=FALSE---------------------------------------------------------------
# data(dataC)
## ----eval=FALSE---------------------------------------------------------------
# dataC[which(dataC$ID==2),]
# #> ID values
# #> 1 2 0.000000e+00
# #> 25 2 1.037331e-12
# #> 49 2 8.176798e-13
## ----eval=FALSE---------------------------------------------------------------
# sites <- unique(dataC$ID)
# values <- numeric(length(sites))
# for (ind in 1:length(sites)){
# s <- sites[ind]
# values[ind] <- mean(dataC$values[dataC$ID==s])
# }
#
# plot(river)
# rivnet::points_colorscale(river$AG$X[unique(dataC$ID)], river$AG$Y[unique(dataC$ID)],
# values)
# title("Mean observed DNA concentration [mol m-3]")
#
## ----map2, echo=FALSE, out.width = '80%'--------------------------------------
knitr::include_graphics("map2.png")
## ----eval=FALSE---------------------------------------------------------------
# covariates <- data.frame(urban = river$SC$locCov$landcover_1,
# agriculture = river$SC$locCov$landcover_2,
# forest = river$SC$locCov$landcover_3,
# elev = river$AG$Z,
# log_drainageArea = log(river$AG$A))
#
## ----eval=FALSE---------------------------------------------------------------
# set.seed(1)
# out.bt.cov <- run_eDITH_BT(dataC, river, covariates)
#
## ----eval=FALSE---------------------------------------------------------------
# set.seed(1)
# out.bt.aem <- run_eDITH_BT(dataC, river)
#
## ----eval=FALSE---------------------------------------------------------------
# set.seed(27)
# out.opt.aem <- run_eDITH_optim(dataC, river, n.AEM = 10,
# n.attempts = 1)
## ----eval=FALSE---------------------------------------------------------------
# plot(out.opt.aem$C[dataC$ID], dataC$values,
# xlim=c(0,8e-12), ylim=c(0, 8e-12), asp=1,
# xlab = "Modelled concentration [mol m-3]",
# ylab = "Observed concentration [mol m-3]")
# abline(0,1)
## ----Cobs, echo=FALSE, out.width = '80%'--------------------------------------
knitr::include_graphics("Cobs.png")
## ----eval=FALSE---------------------------------------------------------------
# plot(river, out.opt.aem$C, colLevels=c(0, max(values), 1000), addLegend = FALSE,
# colPalette = hcl.colors(1000, "Reds 3", rev=T))
# rivnet::points_colorscale(river$AG$X[unique(dataC$ID)], river$AG$Y[unique(dataC$ID)],
# values)
# title("DNA concentration [mol m-3]")
## ----mapC, echo=FALSE, out.width = '80%'--------------------------------------
knitr::include_graphics("mapC.png")
## ----eval=FALSE---------------------------------------------------------------
# plot(river, out.opt.aem$p)
# title('DNA production rate [mol m-2 s-1]')
## ----mapp, echo=FALSE, out.width = '80%'--------------------------------------
knitr::include_graphics("mapp.png")
## ----eval=FALSE---------------------------------------------------------------
# plot(river, out.opt.aem$probDet)
# title('Detection probability')
## ----mappD, echo=FALSE, out.width = '80%'-------------------------------------
knitr::include_graphics("mappD.png")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.