eFCM-package | R Documentation |
Implements the exponential Factor Copula Model (eFCM) of Castro-Camilo and Huser (2020) for spatial extremes, with tools for dependence estimation, tail inference,and visualization. The package supports likelihood-based inference, Gaussian process modeling via Matérn covariance functions, and bootstrap uncertainty quantification.
Castro-Camilo, D. & Huser, R. (2020). Local likelihood estimation of complex tail dependence structures, with application to U.S. precipitation extremes. Journal of the American Statistical Association, 115(531), 1037–1054. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/01621459.2019.1611584")}
Li, M. & Castro-Camilo, D. (2025). On the importance of tail assumptions in climate extreme event attribution. arXiv. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.48550/arXiv.2507.14019")}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.