| n.sim.cond.3d | R Documentation | 
Creates multiple conditional empirical random walks, with a specific starting and ending point, geometrically similar to the initial trajectory by applying sim.cond.3d multiple times.
n.sim.cond.3d( n.sim, n.locs, start = c(0, 0, 0), end = start, a0, g0, densities, qProbs, error = FALSE, parallel = FALSE, DEM = NULL, BG = NULL )
n.sim | 
 number of CERWs to simulate  | 
n.locs | 
 length of the trajectory in locations  | 
start | 
 numeric vector of length 3 with the coordinates of the start point  | 
end | 
 numeric vector of length 3 with the coordinates of the end point  | 
a0 | 
 initial incoming heading in radian  | 
g0 | 
 initial incoming gradient/polar angle in radian  | 
densities | 
 list object returned by the get.densities.3d function  | 
qProbs | 
 list object returned by the qProb.3d function  | 
error | 
 logical: add random noise to the turn angle, lift angle and step length to account for errors measurements?  | 
parallel | 
 logical: run computations in parallel (n-1 cores)? Or numeric: the number of nodes (maximum: n - 1 cores)  | 
DEM | 
 raster layer containing a digital elevation model, covering the area between start and end point  | 
BG | 
 a background raster layer that can be used to inform the choice of steps  | 
A list containing the CERWs or NULLs if dead ends have been encountered.
niclas <- track.properties.3d(niclas) n.locs <- 3 P <- get.track.densities.3d(niclas) f <- 1500 start <- Reduce(c, niclas[1, 1:3]) end <- Reduce(c, niclas[n.locs, 1:3]) a0 <- niclas$a[1] g0 <- niclas$g[1] uerw <- sim.uncond.3d( n.locs * f, start = start, a0 = a0, g0 = g0, densities = P ) Q <- qProb.3d(uerw, n.locs) n.sim.cond.3d( n.sim = 2, n.locs = n.locs, start = start, end = end, a0 = a0, g0 = g0, densities = P, qProbs = Q )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.