| n.sim.cond.3d | R Documentation | 
Creates multiple conditional empirical random walks, with a specific starting and ending point, geometrically similar to the initial trajectory by applying sim.cond.3d multiple times.
n.sim.cond.3d( n.sim, n.locs, start = c(0, 0, 0), end = start, a0, g0, densities, qProbs, error = FALSE, parallel = FALSE, DEM = NULL, BG = NULL )
| n.sim | number of CERWs to simulate | 
| n.locs | length of the trajectory in locations | 
| start | numeric vector of length 3 with the coordinates of the start point | 
| end | numeric vector of length 3 with the coordinates of the end point | 
| a0 | initial incoming heading in radian | 
| g0 | initial incoming gradient/polar angle in radian | 
| densities | list object returned by the get.densities.3d function | 
| qProbs | list object returned by the qProb.3d function | 
| error | logical: add random noise to the turn angle, lift angle and step length to account for errors measurements? | 
| parallel | logical: run computations in parallel (n-1 cores)? Or numeric: the number of nodes (maximum: n - 1 cores) | 
| DEM | raster layer containing a digital elevation model, covering the area between start and end point | 
| BG | a background raster layer that can be used to inform the choice of steps | 
A list containing the CERWs or NULLs if dead ends have been encountered.
niclas <- track.properties.3d(niclas) n.locs <- 3 P <- get.track.densities.3d(niclas) f <- 1500 start <- Reduce(c, niclas[1, 1:3]) end <- Reduce(c, niclas[n.locs, 1:3]) a0 <- niclas$a[1] g0 <- niclas$g[1] uerw <- sim.uncond.3d( n.locs * f, start = start, a0 = a0, g0 = g0, densities = P ) Q <- qProb.3d(uerw, n.locs) n.sim.cond.3d( n.sim = 2, n.locs = n.locs, start = start, end = end, a0 = a0, g0 = g0, densities = P, qProbs = Q )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.