knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(earthtide) library(bench) eval_chunks <- TRUE # may not want to run on CRAN because of threads and running time
This vignette describes a few ways to speed up the computation of Earth tides and in some cases reduce memory consumption. The examples below are kept small to minimize computation time for CRAN, but the methods can scale to larger problems.
The following techniques are presented below: - Irregular time steps - Change wave catalog - Change wave amplitude cutoff - Change how often astronomical parameters are updated - Use parallel computation - Interpolations
Some times you may not need to predict at regular time steps. Irregular time steps are allowed, however, the \code{astro_update} parameter should be set to 1L if you are not using a regular time series.
set.seed(123) tms <- as.POSIXct("1990-01-01", tz = "UTC") + 0:(900) indices <- sort(sample(0:900, 100, replace = FALSE)) wave_groups <- data.frame(start = 0, end = 8) check_fun <- function(target, current) (all.equal(target, current, check.attributes = FALSE)) bench::mark( et <- calc_earthtide( utc = tms, do_predict = TRUE, method = c("tidal_potential", "lod_tide", "pole_tide"), latitude = 52.3868, longitude = 9.7144, elevation = 110, gravity = 9.8127, cutoff = 1.0e-10, catalog = "ksm04", wave_groups = wave_groups )[indices, ], et_irregular <- calc_earthtide( utc = tms[indices], do_predict = TRUE, method = c("tidal_potential", "lod_tide", "pole_tide"), latitude = 52.3868, longitude = 9.7144, elevation = 110, gravity = 9.8127, cutoff = 1.0e-10, catalog = "ksm04", wave_groups = wave_groups ), check = check_fun, iterations = 1 )
Using a catalog with fewer waves will be faster. Here we compare ksm04 and hw95s.
tms <- as.POSIXct("1990-01-01", tz = "UTC") + 0:(900) wave_groups <- data.frame(start = 0, end = 8) bench::mark( et <- calc_earthtide( utc = tms, do_predict = TRUE, method = c("tidal_potential", "lod_tide", "pole_tide"), latitude = 52.3868, longitude = 9.7144, elevation = 110, gravity = 9.8127, cutoff = 1.0e-10, catalog = "ksm04", wave_groups = wave_groups ), et_catalog <- calc_earthtide( utc = tms, do_predict = TRUE, method = c("tidal_potential", "lod_tide", "pole_tide"), latitude = 52.3868, longitude = 9.7144, elevation = 110, gravity = 9.8127, cutoff = 1.0e-10, catalog = "hw95s", wave_groups = wave_groups ), check = FALSE, iterations = 1 )
Increasing the cutoff will decrease the number of waves and thus the speed increases. Results will not be the same.
tms <- as.POSIXct("1990-01-01", tz = "UTC") + 0:(1800) wave_groups <- data.frame(start = 0, end = 8) bench::mark( et <- calc_earthtide( utc = tms, do_predict = TRUE, method = c("tidal_potential", "lod_tide", "pole_tide"), latitude = 52.3868, longitude = 9.7144, elevation = 110, gravity = 9.8127, cutoff = 1.0e-10, catalog = "ksm04", wave_groups = wave_groups ), et_cutoff <- calc_earthtide( utc = tms, do_predict = TRUE, method = c("tidal_potential", "lod_tide", "pole_tide"), latitude = 52.3868, longitude = 9.7144, elevation = 110, gravity = 9.8127, cutoff = 1.0e-5, catalog = "ksm04", wave_groups = wave_groups ), check = FALSE, iterations = 1 )
Increasing the \code{astro_update} parameter leads to an approximation that may speed up computation. Results will not be exactly the same but can be very close as in the following example. The default is that parameters are updated for every time-step.
tms <- as.POSIXct("1990-01-01", tz = "UTC") + 0:(900) wave_groups <- data.frame(start = 0, end = 8) bench::mark( et <- calc_earthtide( utc = tms, do_predict = TRUE, method = c("tidal_potential", "lod_tide", "pole_tide"), latitude = 52.3868, longitude = 9.7144, elevation = 110, gravity = 9.8127, cutoff = 1.0e-10, catalog = "ksm04", wave_groups = wave_groups ), et_astro <- calc_earthtide( utc = tms, do_predict = TRUE, method = c("tidal_potential", "lod_tide", "pole_tide"), latitude = 52.3868, longitude = 9.7144, elevation = 110, gravity = 9.8127, cutoff = 1.0e-10, catalog = "ksm04", wave_groups = wave_groups, astro_update = 30L ), iterations = 1 )
Adjust the number of threads used for parallel computation. This should result in equivalent values.
tms <- as.POSIXct("1990-01-01", tz = "UTC") + 0:(900) wave_groups <- data.frame(start = 0, end = 8) bench::mark( et <- calc_earthtide( utc = tms, do_predict = TRUE, method = c("tidal_potential", "lod_tide", "pole_tide"), latitude = 52.3868, longitude = 9.7144, elevation = 110, gravity = 9.8127, cutoff = 1.0e-10, catalog = "ksm04", wave_groups = wave_groups ), et_threads <- calc_earthtide( utc = tms, do_predict = TRUE, method = c("tidal_potential", "lod_tide", "pole_tide"), latitude = 52.3868, longitude = 9.7144, elevation = 110, gravity = 9.8127, cutoff = 1.0e-10, catalog = "ksm04", wave_groups = wave_groups, n_thread = 10L ), iterations = 1 )
For one second output you can predict every minute and interpolate.
Interpolation is done via \code{stat::spline} which achieves good accuracy with
larger approximations. The number of samples skipped may need to be adjusted
depending on the size of your time step.
Results will not be the exactly the same but can be very close as in
the following example.
tms <- as.POSIXct("1990-01-01", tz = "UTC") + 0:(900) tms_interp <- as.POSIXct("1990-01-01", tz = "UTC") + seq(0, 900, 180) wave_groups <- data.frame(start = 0, end = 8) bench::mark( et <- calc_earthtide( utc = tms, do_predict = TRUE, method = c("tidal_potential", "lod_tide", "pole_tide"), latitude = 52.3868, longitude = 9.7144, elevation = 110, gravity = 9.8127, cutoff = 1.0e-10, catalog = "ksm04", wave_groups = wave_groups ), et_interp <- calc_earthtide( utc = tms_interp, do_predict = TRUE, method = c("tidal_potential", "lod_tide", "pole_tide"), latitude = 52.3868, longitude = 9.7144, elevation = 110, gravity = 9.8127, cutoff = 1.0e-10, catalog = "ksm04", wave_groups = wave_groups, utc_interp = tms ), iterations = 1 )
We will use a larger dataset to compare approximation methods. In general, interpolation will give the best speed-up to accuracy if your time-steps are small (seconds).
tms <- as.POSIXct("1990-01-01", tz = "UTC") + 0:(86400) tms_interp <- as.POSIXct("1990-01-01", tz = "UTC") + seq(0, 86400, 180) wave_groups <- data.frame(start = 0, end = 8) bench::mark( et_astro_threads <- calc_earthtide( utc = tms, do_predict = TRUE, method = c("tidal_potential", "lod_tide", "pole_tide"), latitude = 52.3868, longitude = 9.7144, elevation = 110, gravity = 9.8127, cutoff = 1.0e-10, catalog = "ksm04", wave_groups = wave_groups, astro_update = 60L, n_thread = 10L ), et_interp_threads <- calc_earthtide( utc = tms_interp, do_predict = TRUE, method = c("tidal_potential", "lod_tide", "pole_tide"), latitude = 52.3868, longitude = 9.7144, elevation = 110, gravity = 9.8127, cutoff = 1.0e-10, catalog = "ksm04", wave_groups = wave_groups, utc_interp = tms, n_thread = 10L ), iterations = 1 )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.