echepoi | R Documentation |
The echepoi
function detects spatial clusters using the echelon spatial scan statistic with a Poisson model.
echepoi(echelon.obj, cas, pop = NULL, ex = NULL, K = length(cas)/2, Kmin = 1, n.sim = 99,
cluster.type = "high", cluster.legend.pos = "bottomleft",
dendrogram = TRUE, cluster.info = FALSE, coo = NULL, ...)
echelon.obj |
An object of class |
cas |
A numeric (integer) vector of case counts. |
pop |
A numeric (integer) vector for population. |
ex |
A numeric vector for expected case counts. |
K |
Maximum cluster size. If |
Kmin |
Minimum cluster size. |
n.sim |
The number of Monte Carlo replications used for significance testing of detected clusters. If set to 0, significance is not assessed. |
cluster.type |
A character string specifying the cluster type. If |
cluster.legend.pos |
The location of the legend on the dendrogram. (See |
dendrogram |
Logical. If TRUE, draws an echelon dendrogram with the detected clusters. |
cluster.info |
Logical. If TRUE, returns detailed results of the detected clusters. |
coo |
An array of (x, y) coordinates for the region centroids to plot a cluster map. |
... |
Related to dendrogram drawing. (See the help for |
clusters |
Each detected cluster. |
scanned.regions |
A region list of all scanning processes. |
simulated.LLR |
Monte Carlo samples of the log-likelihood ratio. |
The function echepoi
requires either pop
or ex
.
Typical values of n.sim
are 99, 999, 9999, ...
Fumio Ishioka
[1] Kulldorff M. (1997). A spatial scan statistic. Communications in Statistics: Theory and Methods, 26, 1481–1496.
[2] Ishioka F, Kawahara J, Mizuta M, Minato S, and Kurihara K. (2019) Evaluation of hotspot cluster detection using spatial scan statistic based on exact counting. Japanese Journal of Statistics and Data Science, 2, 241–262.
echelon
for the echelon analysis.
echebin
for cluster detection based on echelons using Binomial model.
##Hotspot detection for SIDS data of North Carolina using echelon scan
#Mortality rate per 1,000 live births from 1974 to 1984
library(spData)
data("nc.sids")
SIDS.cas <- nc.sids$SID74 + nc.sids$SID79
SIDS.pop <- nc.sids$BIR74 + nc.sids$BIR79
SIDS.rate <- SIDS.cas * 1000 / SIDS.pop
#Hotspot detection based on Poisson model
SIDS.echelon <- echelon(x = SIDS.rate, nb = ncCR85.nb, name = row.names(nc.sids))
echepoi(SIDS.echelon, cas = SIDS.cas, pop = SIDS.pop, K = 20,
main = "Hgih rate clusters", ens = FALSE)
text(SIDS.echelon$coord, labels = SIDS.echelon$regions.name,
adj = -0.1, cex = 0.7)
#Detected clusters and neighbors map
#XY coordinates of each polygon centroid point
NC.coo <- cbind(nc.sids$lon, nc.sids$lat)
echepoi(SIDS.echelon, cas = SIDS.cas, pop = SIDS.pop, K = 20,
coo = NC.coo, dendrogram = FALSE)
##Detected clusters map
#Here is an example using the sf class "sf"
SIDS.clusters <- echepoi(SIDS.echelon, cas = SIDS.cas,
pop = SIDS.pop, K = 20, dendrogram = FALSE)
MLC <- SIDS.clusters$clusters[[1]]
Secondary <- SIDS.clusters$clusters[[2]]
cluster.col <- rep(0,times=length(SIDS.rate))
cluster.col[MLC$regionsID] <- 2
cluster.col[Secondary$regionsID] <- 3
library(sf)
nc <- st_read(system.file("shape/nc.shp", package = "sf"))
plot(nc$geometry, col = cluster.col,
main = "Detected high rate clusters")
text(st_coordinates(st_centroid(st_geometry(nc))),
labels = nc$CRESS_ID, cex =0.75)
legend("bottomleft",
c(paste("1- p-value:", MLC$p),
paste("2- p-value:", Secondary$p)),
text.col = c(2,3))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.