Nothing
#' Class \code{"ei_compare"}
#'
#' An S4 class object stemming from ei_rc_good_table(), used for plotting, and
#' examining comparison results.
#'
#'
#' @name ei_compare-class
#' @docType class
#' @section Objects from the Class: Objects can, in principle, be created by
#' calls of the form \code{new("ei_compare", ...)}. However, the preferred
#' form is to have them called ei_rc_good_table()
#' @author Loren Collingwood <loren.collingwood@@ucr.edu>
#' @keywords classes
#' @examples
#'
#' \dontrun{
#' # TOY DATA EXAMPLE
#' canda <- c(.1, .09, .85, .9, .92)
#' candb <- 1 - canda
#' white <- c(.8, .9, .10, .08, .11)
#' black <- 1 - white
#' total <- c(30, 80, 70, 20, 29)
#' toy <- data.frame(canda, candb, white, black, total)
#'
#' # CREATE VECTORS
#' cands <- c("canda")
#' race_group <- c("~ black") # only use one group for example
#' table_names <- c("EI: PCT Black", "EI: PCT White")
#'
#' # RUN ei_est_gen()
#' # KEEP DATA TO JUST ONE ROW FOR EXAMPLE (time) ONLY!
#' results <- ei_est_gen(cands, race_group, "total",
#' data = toy[c(1, 3, 5), ], table_names = table_names, sample = 100
#' )
#'
#' # Generate formula for passage to ei.reg.bayes() function
#' form <- formula(cbind(canda, candb) ~ cbind(black, white))
#' # Run Bayesian model
#' suppressWarnings(
#' ei_bayes <- ei.reg.bayes(form, data = toy, sample = 100, truncate = TRUE)
#' )
#'
#' table_names <- c("RxC: PCT Black", "RxC: PCT White")
#' cands <- c("canda", "candb")
#' ei_bayes_res <- bayes_table_make(ei_bayes, cand_vector = cands, table_names = table_names)
#' ei_bayes_res <- ei_bayes_res[c(1, 2, 5), ]
#' # Combine Results, results in object of class ei_compare
#' ei_rc_combine <- ei_rc_good_table(results, ei_bayes_res,
#' groups = c("Black", "White")
#' )
#' # Produces data and character vector, which can be sent to plot()
#' ei_rc_combine
#' }
#' \dontrun{
#' # Warning: Takes a while to run
#' # Load corona data
#' data(corona)
#' # Generate character vectors
#' cands <- c("pct_husted", "pct_spiegel", "pct_ruth", "pct_button", "pct_montanez", "pct_fox")
#' race_group3 <- c("~ pct_hisp", "~ pct_asian", "~ pct_white")
#' table_names <- c("EI: Pct Lat", "EI: Pct Asian", "EI: Pct White")
#' # Run EI iterative Fitting
#' results <- ei_est_gen(
#' cand_vector = cands, race_group = race_group3,
#' total = "totvote", data = corona, table_names = table_names
#' )
#'
#' # EI: RxC model
#' # Generate formula
#' form <- formula(cbind(pct_husted, pct_spiegel, pct_ruth, pct_button, pct_montanez, pct_fox)
#' ~ cbind(pct_hisp, pct_asian, pct_white))
#' ei_bayes <- ei.reg.bayes(form, data = corona, sample = 10000, truncate = TRUE)
#' # RxC table names
#' table_names <- c("RxC: Pct Hisp", "RxC: Pct Asian", "RxC: Pct White")
#' # Table Creation, using function bayes_table_make in ei_est_generalize.R file
#' ei_bayes_res <- bayes_table_make(ei_bayes, cand_vector = cands, table_names = table_names)
#'
#'
#' # Combine Results, results in object of class ei_compare
#' ei_rc_combine <- ei_rc_good_table(results, ei_bayes_res,
#' groups = c("Latino", "Asian", "White")
#' )
#' # Produces data and character vector, which can be sent to plot()
#' ei_rc_combine
#' }
#'
NULL
#' Compares EI, Goodman, RxC Estimates
#'
#' Compares estimates from three ecological inferences routines, based on King
#' et. al.'s approach.
#'
#' See demo(demo, "eiCompare") for examples on how to use code
#'
#' @name eiCompare-package
#' @aliases eiCompare-package eiCompare
#' @docType package
#' @author Loren Collingwood
#'
#' Maintainer: Loren Collingwood <loren.collingwood@@ucr.edu>
#' @references Gary King (1997). A Solution to the Ecological Inference
#' Problem. Princeton: Princeton University Press. Lau, Olivia, Ryan Moore, and
#' Michael Kellerman. eiPack: Ecological Inference and Higher-Dimension Data
#' Management
#' @keywords package
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.