elm_predict | R Documentation |
Extreme Learning Machine predict function
elm_predict(elm_train_object, newdata, normalize = FALSE)
elm_train_object |
it should be the output of the elm_train function |
newdata |
an input matrix with number of columns equal to the x parameter of the elm_train function |
normalize |
a boolean specifying if the output predictions in case of classification should be normalized. If TRUE then the values of each row of the output-probability-matrix that are less than 0 and greater than 1 will be pushed to the [0,1] range |
library(elmNNRcpp) #----------- # Regression #----------- data(Boston, package = 'KernelKnn') Boston = as.matrix(Boston) dimnames(Boston) = NULL x = Boston[, -ncol(Boston)] y = matrix(Boston[, ncol(Boston)], nrow = length(Boston[, ncol(Boston)]), ncol = 1) out_regr = elm_train(x, y, nhid = 20, actfun = 'purelin', init_weights = 'uniform_negative') pr_regr = elm_predict(out_regr, x) #--------------- # Classification #--------------- data(ionosphere, package = 'KernelKnn') x_class = ionosphere[, -c(2, ncol(ionosphere))] x_class = as.matrix(x_class) dimnames(x_class) = NULL y_class = as.numeric(ionosphere[, ncol(ionosphere)]) y_class_onehot = onehot_encode(y_class - 1) # class labels should begin from 0 out_class = elm_train(x_class, y_class_onehot, nhid = 20, actfun = 'relu') pr_class = elm_predict(out_class, x_class, normalize = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.