Nothing
#' simulated gene expression example data
#'
#' Simulated gene expression data for demonstrating the usage of emBayes.
#'
#' @docType data
#' @keywords datasets
#' @name data
#' @usage data(data)
#' @format The data file consists of five components: y, clin, X, quant, coef and clin.coe. The coefficients and clinical coefficients are the true values of parameters used for generating response y. They can be used for performance evaluation.
#'
#' @details
#'
#' \strong{The data model for generating response}
#'
#'Let \eqn{y_{i}} be the response of the \eqn{i}-th subject (1\eqn{\leq} i\eqn{\leq} n). We have \eqn{z_{i}=(1,z_{i1},\dots,z_{iq})^{\top}} being a \eqn{(q+1)}-dimensional vector of which the last \eqn{q} components indicate clinical factors and \eqn{x_{i}=(x_{i1},\dots,x_{ip})^{\top}} denoting a \eqn{p}-dimensional vector of genetic factors. The linear quantile regression model for the \eqn{\tau}-th quantile \eqn{(0<\tau<1)} is:
#'
#'\deqn{y_i=z_i^\top\alpha+x_i^\top\beta+\epsilon_i}
#'where \eqn{\alpha=(\alpha_0,\cdots,\alpha_q)^\top} contains the intercept and the regression coefficients for the clinical covariates. \eqn{\beta=(\beta_1,\cdots,\beta_p)^\top} are the regression coefficients and random error \eqn{\epsilon_{i}=(\epsilon_{1},...,\epsilon_{n})^\top} is set to follow a T2 distribution and has value \eqn{0} at its \eqn{\tau}-th quantile.
#' @seealso \code{\link{emBayes}}
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.