getStarts: Generate Starts for 'binIRT'

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/getStarts.R

Description

getStarts generates starting values for binIRT.

Usage

1
  getStarts(.N, .J, .D, .type = "zeros")

Arguments

.N

integer, number of subjects/legislators to generate starts for.

.J

integer, number of items/bills to generate starts for.

.D

integer, number of dimensions.

.type

“zeros” and “random” are the only valid types, will generate starts accordingly.

Value

alpha

A (J x 1) matrix of starting values for the item difficulty parameter alpha.

beta

A (J x D) matrix of starting values for the item discrimination parameter β.

x

An (N x D) matrix of starting values for the respondent ideal points x_i.

Author(s)

Kosuke Imai [email protected]

James Lo [email protected]

Jonathan Olmsted [email protected]

References

Kosuke Imai, James Lo, and Jonathan Olmsted “Fast Estimation of Ideal Points with Massive Data.” Working Paper. Available at http://imai.princeton.edu/research/fastideal.html.

See Also

'binIRT', 'makePriors', 'convertRC'.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
## Data from 109th US Senate
data(s109)

## Convert data and make starts/priors for estimation
rc <- convertRC(s109)
p <- makePriors(rc$n, rc$m, 1)
s <- getStarts(rc$n, rc$m, 1)

## Conduct estimates
lout <- binIRT(.rc = rc,
                .starts = s,
                .priors = p,
                .control = {
                    list(threads = 1,
                         verbose = FALSE,
                         thresh = 1e-6
                         )
                }
                )

## Look at first 10 ideal point estimates
lout$means$x[1:10]

emIRT documentation built on May 29, 2017, 7:10 p.m.