Nothing
$$
\begin{aligned}
{\color{blue}{\operatorname{Stops}}}_{i} &\sim \operatorname{Poisson}(\lambda_i) \\
\log(\lambda_i) &=\alpha_{j[i]} + \beta_{1}({\color{red}{\operatorname{Ethnicity}}}{\color{purple}{_{\operatorname{hispanic}}}}) + \beta_{2}({\color{red}{\operatorname{Ethnicity}}}{\color{purple}{_{\operatorname{white}}}}) \\
\alpha_{j} &\sim N \left(\gamma_{0}^{\alpha} + \gamma_{1}^{\alpha}(\operatorname{Total\ Arrests}), \sigma^2_{\alpha_{j}} \right)
\text{, for precinct j = 1,} \dots \text{,J}
\end{aligned}
$$
$$
\begin{aligned}
\operatorname{stops}_{i} &\sim \operatorname{Poisson}(\lambda_i) \\
\log(\lambda_i) &=\alpha_{j[i]} + \beta_{1}(\operatorname{Ethnicity}_{\operatorname{Hispanic/Latino}}) + \beta_{2}(\operatorname{Ethnicity}_{\operatorname{White}}) \\
\alpha_{j} &\sim N \left(\gamma_{0}^{\alpha} + \gamma_{1}^{\alpha}(\operatorname{Total\ Arrests}), \sigma^2_{\alpha_{j}} \right)
\text{, for precinct j = 1,} \dots \text{,J}
\end{aligned}
$$
$$
\begin{aligned}
\operatorname{stops}_{i} &\sim \operatorname{Poisson}(\lambda_i) \\
\log(\lambda_i) &=\alpha_{j[i]} + \beta_{1}(\operatorname{eth}_{\operatorname{hispanic}}) + \beta_{2}(\operatorname{eth}_{\operatorname{white}}) \\
\alpha_{j} &\sim N \left(\mu_{\alpha_{j}}, \sigma^2_{\alpha_{j}} \right)
\text{, for precinct j = 1,} \dots \text{,J}
\end{aligned}
$$
$$
\begin{aligned}
\operatorname{stops}_{i} &\sim \operatorname{Poisson}(\lambda_i) \\
\log(\lambda_i) &=\alpha_{j[i]} + \beta_{1j[i]}(\operatorname{eth}_{\operatorname{hispanic}}) + \beta_{2j[i]}(\operatorname{eth}_{\operatorname{white}}) \\
\left(
\begin{array}{c}
\begin{aligned}
&\alpha_{j} \\
&\beta_{1j} \\
&\beta_{2j}
\end{aligned}
\end{array}
\right)
&\sim N \left(
\left(
\begin{array}{c}
\begin{aligned}
&\gamma_{0}^{\alpha} + \gamma_{1}^{\alpha}(\operatorname{total\_arrests}) \\
&\gamma^{\beta_{1}}_{0} + \gamma^{\beta_{1}}_{1}(\operatorname{total\_arrests}) \\
&\gamma^{\beta_{2}}_{0} + \gamma^{\beta_{2}}_{1}(\operatorname{total\_arrests})
\end{aligned}
\end{array}
\right)
,
\left(
\begin{array}{ccc}
\sigma^2_{\alpha_{j}} & \rho_{\alpha_{j}\beta_{1j}} & \rho_{\alpha_{j}\beta_{2j}} \\
\rho_{\beta_{1j}\alpha_{j}} & \sigma^2_{\beta_{1j}} & \rho_{\beta_{1j}\beta_{2j}} \\
\rho_{\beta_{2j}\alpha_{j}} & \rho_{\beta_{2j}\beta_{1j}} & \sigma^2_{\beta_{2j}}
\end{array}
\right)
\right)
\text{, for precinct j = 1,} \dots \text{,J}
\end{aligned}
$$
$$
\begin{aligned}
\operatorname{stops}_{i} &\sim \operatorname{Poisson}(\lambda_i) \\
\log(\lambda_i) &=\log(\operatorname{arrests}) + \alpha_{j[i]} + \beta_{1}(\operatorname{eth}_{\operatorname{hispanic}}) + \beta_{2}(\operatorname{eth}_{\operatorname{white}}) \\
\alpha_{j} &\sim N \left(\mu_{\alpha_{j}}, \sigma^2_{\alpha_{j}} \right)
\text{, for precinct j = 1,} \dots \text{,J}
\end{aligned}
$$
$$
\begin{aligned}
\operatorname{stops}_{i} &\sim \operatorname{Poisson}(\lambda_i) \\
\log(\lambda_i) &=\log(\operatorname{arrests}) + \alpha_{j[i]} + \beta_{1j[i]}(\operatorname{eth}_{\operatorname{hispanic}}) + \beta_{2j[i]}(\operatorname{eth}_{\operatorname{white}}) \\
\left(
\begin{array}{c}
\begin{aligned}
&\alpha_{j} \\
&\beta_{1j} \\
&\beta_{2j}
\end{aligned}
\end{array}
\right)
&\sim N \left(
\left(
\begin{array}{c}
\begin{aligned}
&\gamma_{0}^{\alpha} + \gamma_{1}^{\alpha}(\operatorname{total\_arrests}) \\
&\gamma^{\beta_{1}}_{0} + \gamma^{\beta_{1}}_{1}(\operatorname{total\_arrests}) \\
&\gamma^{\beta_{2}}_{0} + \gamma^{\beta_{2}}_{1}(\operatorname{total\_arrests})
\end{aligned}
\end{array}
\right)
,
\left(
\begin{array}{ccc}
\sigma^2_{\alpha_{j}} & \rho_{\alpha_{j}\beta_{1j}} & \rho_{\alpha_{j}\beta_{2j}} \\
\rho_{\beta_{1j}\alpha_{j}} & \sigma^2_{\beta_{1j}} & \rho_{\beta_{1j}\beta_{2j}} \\
\rho_{\beta_{2j}\alpha_{j}} & \rho_{\beta_{2j}\beta_{1j}} & \sigma^2_{\beta_{2j}}
\end{array}
\right)
\right)
\text{, for precinct j = 1,} \dots \text{,J}
\end{aligned}
$$
$$
\begin{aligned}
\operatorname{bush}_{i} &\sim \operatorname{Binomial}(n = 1, \operatorname{prob}_{\operatorname{bush} = 1} = \widehat{P}) \\
\log\left[\frac{\hat{P}}{1 - \hat{P}} \right] &=\alpha_{j[i]} + \beta_{1j[i]}(\operatorname{black}) + \beta_{2}(\operatorname{female}) + \beta_{3}(\operatorname{edu}) \\
\left(
\begin{array}{c}
\begin{aligned}
&\alpha_{j} \\
&\beta_{1j}
\end{aligned}
\end{array}
\right)
&\sim N \left(
\left(
\begin{array}{c}
\begin{aligned}
&\mu_{\alpha_{j}} \\
&\mu_{\beta_{1j}}
\end{aligned}
\end{array}
\right)
,
\left(
\begin{array}{cc}
\sigma^2_{\alpha_{j}} & \rho_{\alpha_{j}\beta_{1j}} \\
\rho_{\beta_{1j}\alpha_{j}} & \sigma^2_{\beta_{1j}}
\end{array}
\right)
\right)
\text{, for state j = 1,} \dots \text{,J}
\end{aligned}
$$
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.