tests/testthat/_snaps/polr.md

Ordered logistic regression works

$$
\begin{aligned}
\log\left[ \frac { P( \operatorname{A} \geq \operatorname{B} ) }{ 1 - P( \operatorname{A} \geq \operatorname{B} ) } \right] &= \alpha_{1} + \beta_{1}(\operatorname{continuous\_1}) + \beta_{2}(\operatorname{continuous\_2}) \\
\log\left[ \frac { P( \operatorname{B} \geq \operatorname{C} ) }{ 1 - P( \operatorname{B} \geq \operatorname{C} ) } \right] &= \alpha_{2} + \beta_{1}(\operatorname{continuous\_1}) + \beta_{2}(\operatorname{continuous\_2})
\end{aligned}
$$
$$
\begin{aligned}
\log\left[ \frac { P( \operatorname{A} \geq \operatorname{B} ) }{ 1 - P( \operatorname{A} \geq \operatorname{B} ) } \right] &= \alpha_{1} + \beta_{1}(\operatorname{continuous\_1})\ + \\
&\quad \beta_{2}(\operatorname{continuous\_2}) \\
\log\left[ \frac { P( \operatorname{B} \geq \operatorname{C} ) }{ 1 - P( \operatorname{B} \geq \operatorname{C} ) } \right] &= \alpha_{2} + \beta_{1}(\operatorname{continuous\_1})\ + \\
&\quad \beta_{2}(\operatorname{continuous\_2})
\end{aligned}
$$
$$
\begin{aligned}
P( \operatorname{A} \geq \operatorname{B} ) &= \Phi[\alpha_{1} + \beta_{1}(\operatorname{continuous\_1}) + \beta_{2}(\operatorname{continuous\_2})] \\
P( \operatorname{B} \geq \operatorname{C} ) &= \Phi[\alpha_{2} + \beta_{1}(\operatorname{continuous\_1}) + \beta_{2}(\operatorname{continuous\_2})]
\end{aligned}
$$
$$
\begin{aligned}
P( \operatorname{A} \geq \operatorname{B} ) &= \Phi[\alpha_{1} + \beta_{1}(\operatorname{continuous\_1})\ + \\
&\qquad\ \beta_{2}(\operatorname{continuous\_2})] \\
P( \operatorname{B} \geq \operatorname{C} ) &= \Phi[\alpha_{2} + \beta_{1}(\operatorname{continuous\_1})\ + \\
&\qquad\ \beta_{2}(\operatorname{continuous\_2})]
\end{aligned}
$$
$$
\begin{aligned}
\log\left[ \frac { P( \operatorname{A} \geq \operatorname{B} ) }{ 1 - P( \operatorname{A} \geq \operatorname{B} ) } \right] &= 1.09 + 0.03(\operatorname{continuous\_1}) - 0.03(\operatorname{continuous\_2}) \\
\log\left[ \frac { P( \operatorname{B} \geq \operatorname{C} ) }{ 1 - P( \operatorname{B} \geq \operatorname{C} ) } \right] &= 2.48 + 0.03(\operatorname{continuous\_1}) - 0.03(\operatorname{continuous\_2})
\end{aligned}
$$


Try the equatiomatic package in your browser

Any scripts or data that you put into this service are public.

equatiomatic documentation built on Jan. 30, 2021, 9:06 a.m.