Nothing
Code
estimate
Output
Analysis of raw data:
Data frame = data
Outcome variable(s) = transcription
---Overview---
outcome_variable_name mean mean_LL mean_UL median median_LL median_UL
1 transcription 8.811765 7.154642 10.46889 8.6 6.5 11.1
sd min max q1 q3 n missing df mean_SE median_SE
1 4.749339 1 20.1 5.2 11.275 34 0 33 0.8145049 1.021201
-- es_mean --
outcome_variable_name effect effect_size LL UL SE
1 transcription transcription 8.811765 7.154642 10.46889 0.8145049
df ta_LL ta_UL
1 33 7.746606 9.876923
-- es_median --
outcome_variable_name effect effect_size LL UL SE df ta_LL
1 transcription transcription 8.6 6.5 11.1 1.021201 33 7.1
ta_UL
1 10.8
-- es_mean_difference --
outcome_variable_name effect effect_size LL
1 transcription transcription 8.811765 7.154642
2 transcription Reference value 10.000000 NA
3 transcription transcription ‒ Reference value -1.188235 -2.845358
UL SE df ta_LL ta_UL type
1 10.4688874 0.8145049 33 7.746606 9.876923 Comparison
2 NA NA NA 7.746606 9.876923 Reference
3 0.4688874 0.8145049 33 -2.253394 -0.123077 Difference
-- es_median_difference --
outcome_variable_name effect effect_size LL UL
1 transcription transcription 8.6 6.5 11.1
2 transcription Reference value 10.0 NA NA
3 transcription transcription ‒ Reference value -1.4 -3.5 1.1
SE df ta_LL ta_UL type
1 1.021201 33 7.1 10.8 Comparison
2 NA NA NA NA Reference
3 1.021201 33 -2.9 0.8 Difference
-- es_smd --
outcome_variable_name effect effect_size LL
1 transcription transcription ‒ Reference value -0.2444527 -0.5838873
UL numerator denominator SE df d_biased
1 0.09856549 -1.188235 4.749339 0.1740983 33 -0.2501896
This standardized mean difference is called d_1 because the standardizer used was s. d_1 has been corrected for bias. Correction for bias can be important when df < 50. See the rightmost column for the biased value.
Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
Code
estimate
Output
Analysis of raw data:
Outcome variable(s) = My outcome variable
---Overview---
outcome_variable_name mean mean_LL mean_UL sd n df mean_SE
1 My outcome variable 12.09 11.01117 13.16883 5.52 103 102 0.5439018
-- es_mean --
outcome_variable_name effect effect_size LL UL
1 My outcome variable My outcome variable 12.09 11.01117 13.16883
SE df ta_LL ta_UL
1 0.5439018 102 11.38842 12.79158
-- es_mean_difference --
outcome_variable_name effect effect_size
1 My outcome variable My outcome variable 12.09
2 My outcome variable Reference value 0.00
3 My outcome variable My outcome variable ‒ Reference value 12.09
LL UL SE df ta_LL ta_UL type
1 11.01117 13.16883 0.5439018 102 11.38842 12.79158 Comparison
2 NA NA NA NA 11.38842 12.79158 Reference
3 11.01117 13.16883 0.5439018 102 11.38842 12.79158 Difference
-- es_smd --
outcome_variable_name effect effect_size
1 My outcome variable My outcome variable ‒ Reference value 2.174067
LL UL numerator denominator SE df d_biased
1 1.817286 2.527352 12.09 5.52 0.181166 102 2.190217
This standardized mean difference is called d_1 because the standardizer used was s. d_1 has been corrected for bias. Correction for bias can be important when df < 50. See the rightmost column for the biased value.
Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.