Nothing
Code
estimate
Output
Analysis of raw data:
Data frame = structure(list("Participant ID" = structure(1:12, levels = c("1",
Analysis of raw data:
Data frame = "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"), class = "factor"),
Analysis of raw data:
Data frame = Pretest = c(13, 12, 12, 9, 14, 17, 14, 9, 6, 7, 11, 15),
Analysis of raw data:
Data frame = Posttest = c(14, 13, 16, 12, 15, 18, 13, 10, 10, 8, 14, 16
Analysis of raw data:
Data frame = )), removedRows = list(), addedRows = list(list(start = 0L,
Analysis of raw data:
Data frame = end = 11L)), transforms = list(), row.names = c(NA, 12L), class = "data.frame")
---Overview---
outcome_variable_name mean mean_LL mean_UL median median_LL median_UL
1 Pretest 11.58333 9.476776 13.68989 12.0 9 14
2 Posttest 13.25000 11.410019 15.08998 13.5 10 16
sd min max q1 q3 n missing df mean_SE median_SE
1 3.315483 6 17 9.0 14.00 12 0 11 0.9570974 1.208488
2 2.895922 8 18 11.5 15.25 12 0 11 0.8359806 1.450186
-- es_mean_difference --
type comparison_measure_name reference_measure_name effect
1 Comparison Posttest Pretest Posttest
2 Reference Posttest Pretest Pretest
11 Difference Posttest Pretest Posttest ‒ Pretest
effect_size LL UL SE df ta_LL ta_UL
1 13.250000 11.410019 15.089981 0.8359806 11 11.748675 14.751325
2 11.583333 9.476776 13.689890 0.9570974 11 9.864497 13.302170
11 1.666667 0.715218 2.618115 0.4322831 11 0.890336 2.442997
-- es_smd --
comparison_measure_name reference_measure_name effect effect_size
1 Posttest Pretest Posttest - Pretest 0.5105098
LL UL numerator denominator SE d_biased df
1 0.1806393 0.8902152 1.666667 3.112779 0.1810176 0.5105098 11
This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.
-- es_r --
x_variable_name y_variable_name effect effect_size LL
1 Pretest Posttest Pretest and Posttest 0.8923908 0.62894
UL SE n df ta_LL ta_UL
1 0.967157 0.06139936 12 10 0.6882891 0.9596343
-- es_median_difference --
type comparison_measure_name reference_measure_name effect
Comparison Posttest Pretest Posttest
1 Reference Posttest Pretest Pretest
2 Difference Posttest Pretest Posttest ‒ Pretest
effect_size LL UL SE ta_LL ta_UL
13.5 10.000000 16.000000 1.450186 10.000000 16.000000
1 12.0 9.000000 14.000000 1.208488 9.000000 14.000000
2 1.5 -1.589665 4.589665 1.576389 -1.589665 4.589665
-- es_mean_ratio --
comparison_measure_name reference_measure_name effect effect_size
1 Posttest Pretest Posttest / Pretest 1.143885
LL UL comparison_mean reference_mean
1 1.05031 1.245797 13.25 11.58333
[1] "This effect-size measure is appropriate only for true ratio scales."
-- es_median_ratio --
comparison_measure_name reference_measure_name effect effect_size
1 Posttest Pretest Posttest / Pretest 1.125
LL UL comparison_median reference_median
1 0.8723319 1.450853 13.5 12
[1] "This effect-size measure is appropriate only for true ratio scales."
Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
Code
mytest
Output
$properties
$properties$effect_size_name
[1] "mean"
$properties$alpha
[1] 0.05
$properties$interval_null
[1] FALSE
$properties$rope
[1] 0 0
$properties$rope_units
[1] "raw"
$point_null
test_type outcome_variable_name effect null_words
1 Nil Hypothesis Test Posttest - Pretest Posttest ‒ Pretest 0.00
confidence LL UL CI
1 95 0.715218 2.618115 95% CI [0.715218, 2.618115]
CI_compare t df p p_result
1 The 95% CI does not contain H_0 3.855498 11 0.002674001 p < 0.05
null_decision conclusion
1 Reject H_0 At α = 0.05, 0.00 is not a plausible value of μ_diff
significant
1 TRUE
Code
estimate_99
Output
Analysis of raw data:
Data frame = structure(list("Participant ID" = structure(1:12, levels = c("1",
Analysis of raw data:
Data frame = "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"), class = "factor"),
Analysis of raw data:
Data frame = Pretest = c(13, 12, 12, 9, 14, 17, 14, 9, 6, 7, 11, 15),
Analysis of raw data:
Data frame = Posttest = c(14, 13, 16, 12, 15, 18, 13, 10, 10, 8, 14, 16
Analysis of raw data:
Data frame = )), removedRows = list(), addedRows = list(list(start = 0L,
Analysis of raw data:
Data frame = end = 11L)), transforms = list(), row.names = c(NA, 12L), class = "data.frame")
---Overview---
outcome_variable_name mean mean_LL mean_UL median median_LL median_UL
1 Pretest 11.58333 8.610774 14.55589 12.0 7 15
2 Posttest 13.25000 10.653606 15.84639 13.5 10 16
sd min max q1 q3 n missing df mean_SE median_SE
1 3.315483 6 17 9.0 14.00 12 0 11 0.9570974 1.208488
2 2.895922 8 18 11.5 15.25 12 0 11 0.8359806 1.450186
-- es_mean_difference --
type comparison_measure_name reference_measure_name effect
1 Comparison Posttest Pretest Posttest
2 Reference Posttest Pretest Pretest
11 Difference Posttest Pretest Posttest ‒ Pretest
effect_size LL UL SE df ta_LL ta_UL
1 13.250000 10.653606 15.846394 0.8359806 11 10.9777384 15.522262
2 11.583333 8.610774 14.555893 0.9570974 11 8.9818669 14.184800
11 1.666667 0.324079 3.009254 0.4322831 11 0.4916869 2.841646
-- es_smd --
comparison_measure_name reference_measure_name effect effect_size
1 Posttest Pretest Posttest - Pretest 0.5105098
LL UL numerator denominator SE d_biased df
1 0.06915683 1.001698 1.666667 3.112779 0.1810176 0.5105098 11
This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.
-- es_r --
x_variable_name y_variable_name effect effect_size LL
1 Pretest Posttest Pretest and Posttest 0.8923908 0.4887161
UL SE n df ta_LL ta_UL
1 0.9780952 0.06139936 12 10 0.5494077 0.9741826
-- es_median_difference --
type comparison_measure_name reference_measure_name effect
Comparison Posttest Pretest Posttest
1 Reference Posttest Pretest Pretest
2 Difference Posttest Pretest Posttest ‒ Pretest
effect_size LL UL SE ta_LL ta_UL
13.5 10.000000 16.000000 1.450186 10.000000 16.000000
1 12.0 7.000000 15.000000 1.208488 7.000000 15.000000
2 1.5 -2.560508 5.560508 1.576389 -2.560508 5.560508
-- es_mean_ratio --
comparison_measure_name reference_measure_name effect effect_size
1 Posttest Pretest Posttest / Pretest 1.143885
LL UL comparison_mean reference_mean
1 1.014099 1.290281 13.25 11.58333
[1] "This effect-size measure is appropriate only for true ratio scales."
-- es_median_ratio --
comparison_measure_name reference_measure_name effect effect_size
1 Posttest Pretest Posttest / Pretest 1.125
LL UL comparison_median reference_median
1 0.8053215 1.571577 13.5 12
[1] "This effect-size measure is appropriate only for true ratio scales."
Note: LL and UL are lower and upper boundaries of confidence intervals with 99% expected coverage.
Code
estimate
Output
Analysis of raw data:
---Overview---
outcome_variable_name mean mean_LL mean_UL sd n df mean_SE
1 Before 12.88 11.06827 14.69173 3.40 16 15 0.85
2 After 14.25 11.96935 16.53065 4.28 16 15 1.07
-- es_mean_difference --
type comparison_measure_name reference_measure_name effect
1 Comparison After Before After
2 Reference After Before Before
11 Difference After Before After ‒ Before
effect_size LL UL SE df ta_LL ta_UL
1 14.25 11.9693490 16.530651 1.0700 15 12.3742361 16.125764
2 12.88 11.0682679 14.691732 0.8500 15 11.3899072 14.370093
11 1.37 0.2350031 2.504997 0.5325 15 0.4365007 2.303499
-- es_smd --
comparison_measure_name reference_measure_name effect effect_size
1 After Before After - Before 0.3424327
LL UL numerator denominator SE d_biased df
1 0.05110995 0.6577932 1.37 3.865126 0.154769 0.3424327 15
This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.
-- es_r --
x_variable_name y_variable_name effect effect_size LL
1 Before After Before and After 0.8707222 0.6430976
UL SE n df ta_LL ta_UL
1 0.9518053 0.06244354 16 14 0.6915049 0.9428632
Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
Code
mytest
Output
$properties
$properties$effect_size_name
[1] "mean"
$properties$alpha
[1] 0.05
$properties$interval_null
[1] FALSE
$properties$rope
[1] 0 0
$properties$rope_units
[1] "raw"
$point_null
test_type outcome_variable_name effect null_words
1 Nil Hypothesis Test After - Before After ‒ Before 0.00
confidence LL UL CI
1 95 0.2350031 2.504997 95% CI [0.2350031, 2.504997]
CI_compare t df p p_result null_decision
1 The 95% CI does not contain H_0 2.57277 15 0.02121729 p < 0.05 Reject H_0
conclusion significant
1 At α = 0.05, 0.00 is not a plausible value of μ_diff TRUE
Code
estimate_99
Output
Analysis of raw data:
---Overview---
outcome_variable_name mean mean_LL mean_UL sd n df mean_SE
1 Before 12.88 10.37529 15.38471 3.40 16 15 0.85
2 After 14.25 11.09702 17.40298 4.28 16 15 1.07
-- es_mean_difference --
type comparison_measure_name reference_measure_name effect
1 Comparison After Before After
2 Reference After Before Before
11 Difference After Before After ‒ Before
effect_size LL UL SE df ta_LL ta_UL
1 14.25 11.0970172 17.402983 1.0700 15 11.46534608 17.034654
2 12.88 10.3752940 15.384706 0.8500 15 10.66789175 15.092108
11 1.37 -0.1991246 2.939125 0.5325 15 -0.01582076 2.755821
-- es_smd --
comparison_measure_name reference_measure_name effect effect_size
1 After Before After - Before 0.3424327
LL UL numerator denominator SE d_biased df
1 -0.0442069 0.75311 1.37 3.865126 0.154769 0.3424327 15
This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.
-- es_r --
x_variable_name y_variable_name effect effect_size LL
1 Before After Before and After 0.8707222 0.5317828
UL SE n df ta_LL ta_UL
1 0.9655115 0.06244354 16 14 0.5795743 0.9604938
Note: LL and UL are lower and upper boundaries of confidence intervals with 99% expected coverage.
Code
estimate
Output
Analysis of raw data:
---Overview---
outcome_variable_name mean mean_LL mean_UL median median_LL median_UL
1 y2 21.6 4.167124 39.03288 28 14 40
2 y1 11.2 3.954738 18.44526 12 6 19
sd min max q1 q3 n missing df mean_SE median_SE
1 31.47970 -67 52 17 40.0 15 0 14 8.128023 6.171216
2 13.08325 -21 35 7 18.5 15 0 14 3.378081 3.085608
-- es_mean_difference --
type comparison_measure_name reference_measure_name effect
1 Comparison y1 y2 y1
2 Reference y1 y2 y2
11 Difference y1 y2 y1 ‒ y2
effect_size LL UL SE df ta_LL ta_UL
1 11.2 3.954738 18.4452623 3.378081 14 5.250152 17.149848
2 21.6 4.167124 39.0328761 8.128023 14 7.284030 35.915970
11 -10.4 -21.379887 0.5798875 5.119338 14 -19.416741 -1.383259
-- es_smd --
comparison_measure_name reference_measure_name effect effect_size LL
1 y1 y2 y1 - y2 -0.4157442 -0.8900751
UL numerator denominator SE d_biased df
1 0.02719875 -10.4 24.10542 0.2340027 -0.4157442 14
This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.
-- es_r --
x_variable_name y_variable_name effect effect_size LL UL
1 y2 y1 y2 and y1 0.9336117 0.7956616 0.9766029
SE n df ta_LL ta_UL
1 0.03430812 15 13 0.8267061 0.9719999
-- es_median_difference --
type comparison_measure_name reference_measure_name effect effect_size
Comparison y1 y2 y1 12
1 Reference y1 y2 y2 28
2 Difference y1 y2 y1 ‒ y2 -16
LL UL SE ta_LL ta_UL
6.00000 19.000000 3.085608 6.00000 19.000000
1 14.00000 40.000000 6.171216 14.00000 40.000000
2 -25.23798 -6.762016 4.713344 -25.23798 -6.762016
-- es_mean_ratio --
comparison_measure_name reference_measure_name effect effect_size LL
1 y1 y2 y1 / y2 0.5185185 0.3809957
UL comparison_mean reference_mean
1 0.7056811 11.2 21.6
[1] "WARNING! Your dataset includes negative values. This effect-size measure is appropriate only for true ratio scales."
-- es_median_ratio --
comparison_measure_name reference_measure_name effect effect_size LL UL
1 y1 y2 y1 / y2 NA NA NA
comparison_median reference_median
1 NA NA
[1] "WARNING! Your dataset includes negative values. This effect-size measure is appropriate only for true ratio scales."
Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
Warnings:
* The ratio between group effect size is appropriate only for true ratio scales where values < 0 are impossible. Your data include at least one negative value, so the requested ratio effect size is not reported.
Code
from_vector
Output
Analysis of raw data:
---Overview---
outcome_variable_name mean mean_LL mean_UL median median_LL median_UL
1 bk_wrapper 2.266667 1.757755 2.775578 2 1 3
2 wc_wrapper 1.833333 1.506871 2.159795 2 1 2
sd min max q1 q3 n missing df mean_SE median_SE
1 1.3628908 1 5 1 3 30 0 29 0.2488287 0.4936052
2 0.8742813 1 4 1 2 30 0 29 0.1596212 0.2468026
-- es_mean_difference --
type comparison_measure_name reference_measure_name
1 Comparison wc_wrapper bk_wrapper
2 Reference wc_wrapper bk_wrapper
11 Difference wc_wrapper bk_wrapper
effect effect_size LL UL SE df
1 wc_wrapper 1.8333333 1.5068713 2.15979534 0.1596212 29
2 bk_wrapper 2.2666667 1.7577549 2.77557845 0.2488287 29
11 wc_wrapper ‒ bk_wrapper -0.4333333 -0.9398777 0.07321103 0.2476711 29
ta_LL ta_UL
1 1.5621166 2.1045500
2 1.8438751 2.6894582
11 -0.8541581 -0.0125086
-- es_smd --
comparison_measure_name reference_measure_name effect
1 wc_wrapper bk_wrapper wc_wrapper - bk_wrapper
effect_size LL UL numerator denominator SE d_biased
1 -0.3718897 -0.8165806 0.059636 -0.4333333 1.144954 0.2235287 -0.3718897
df
1 29
This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.
-- es_r --
x_variable_name y_variable_name effect effect_size
1 bk_wrapper wc_wrapper bk_wrapper and wc_wrapper 0.32798
LL UL SE n df ta_LL ta_UL
1 -0.04226176 0.6119942 0.1657199 30 28 0.01835401 0.5726524
-- es_median_difference --
type comparison_measure_name reference_measure_name
Comparison wc_wrapper bk_wrapper
1 Reference wc_wrapper bk_wrapper
2 Difference wc_wrapper bk_wrapper
effect effect_size LL UL SE ta_LL
wc_wrapper 2 1.000000 2.000000 0.2468026 1.000000
1 bk_wrapper 2 1.000000 3.000000 0.4936052 1.000000
2 wc_wrapper ‒ bk_wrapper 0 -1.109202 1.109202 0.5659300 -1.109202
ta_UL
2.000000
1 3.000000
2 1.109202
-- es_mean_ratio --
comparison_measure_name reference_measure_name effect
1 wc_wrapper bk_wrapper wc_wrapper / bk_wrapper
effect_size LL UL comparison_mean reference_mean
1 0.8088235 0.6385273 1.024538 1.833333 2.266667
[1] "This effect-size measure is appropriate only for true ratio scales."
-- es_median_ratio --
comparison_measure_name reference_measure_name effect
1 wc_wrapper bk_wrapper wc_wrapper / bk_wrapper
effect_size LL UL comparison_median reference_median
1 1 0.5239318 1.908646 2 2
[1] "This effect-size measure is appropriate only for true ratio scales."
Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
Code
from_df_strings
Output
Analysis of raw data:
Data frame = structure(list(wc = c(2, 3, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2,
Analysis of raw data:
Data frame = 4, 1, 1, 4, 2, 2, 1, 2, 2, 1, 3, 2, 2, 1, 1, 2, 2), bk = c(4,
Analysis of raw data:
Data frame = 4, 3, 2, 2, 5, 1, 1, 3, 1, 1, 2, 4, 3, 1, 1, 1, 3, 1, 1, 1, 5,
Analysis of raw data:
Data frame = 1, 4, 1, 3, 2, 4, 2, 1)), row.names = c(NA, 30L), class = "data.frame")
---Overview---
outcome_variable_name mean mean_LL mean_UL median median_LL median_UL
1 bk 2.266667 1.757755 2.775578 2 1 3
2 wc 1.833333 1.506871 2.159795 2 1 2
sd min max q1 q3 n missing df mean_SE median_SE
1 1.3628908 1 5 1 3 30 0 29 0.2488287 0.4936052
2 0.8742813 1 4 1 2 30 0 29 0.1596212 0.2468026
-- es_mean_difference --
type comparison_measure_name reference_measure_name effect
1 Comparison wc bk wc
2 Reference wc bk bk
11 Difference wc bk wc ‒ bk
effect_size LL UL SE df ta_LL ta_UL
1 1.8333333 1.5068713 2.15979534 0.1596212 29 1.5621166 2.1045500
2 2.2666667 1.7577549 2.77557845 0.2488287 29 1.8438751 2.6894582
11 -0.4333333 -0.9398777 0.07321103 0.2476711 29 -0.8541581 -0.0125086
-- es_smd --
comparison_measure_name reference_measure_name effect effect_size LL
1 wc bk wc - bk -0.3718897 -0.8165806
UL numerator denominator SE d_biased df
1 0.059636 -0.4333333 1.144954 0.2235287 -0.3718897 29
This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.
-- es_r --
x_variable_name y_variable_name effect effect_size LL UL
1 bk wc bk and wc 0.32798 -0.04226176 0.6119942
SE n df ta_LL ta_UL
1 0.1657199 30 28 0.01835401 0.5726524
-- es_median_difference --
type comparison_measure_name reference_measure_name effect effect_size
Comparison wc bk wc 2
1 Reference wc bk bk 2
2 Difference wc bk wc ‒ bk 0
LL UL SE ta_LL ta_UL
1.000000 2.000000 0.2468026 1.000000 2.000000
1 1.000000 3.000000 0.4936052 1.000000 3.000000
2 -1.109202 1.109202 0.5659300 -1.109202 1.109202
-- es_mean_ratio --
comparison_measure_name reference_measure_name effect effect_size LL
1 wc bk wc / bk 0.8088235 0.6385273
UL comparison_mean reference_mean
1 1.024538 1.833333 2.266667
[1] "This effect-size measure is appropriate only for true ratio scales."
-- es_median_ratio --
comparison_measure_name reference_measure_name effect effect_size LL
1 wc bk wc / bk 1 0.5239318
UL comparison_median reference_median
1 1.908646 2 2
[1] "This effect-size measure is appropriate only for true ratio scales."
Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
Code
from_df_tidy
Output
Analysis of raw data:
Data frame = structure(list(wc = c(2, 3, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2,
Analysis of raw data:
Data frame = 4, 1, 1, 4, 2, 2, 1, 2, 2, 1, 3, 2, 2, 1, 1, 2, 2), bk = c(4,
Analysis of raw data:
Data frame = 4, 3, 2, 2, 5, 1, 1, 3, 1, 1, 2, 4, 3, 1, 1, 1, 3, 1, 1, 1, 5,
Analysis of raw data:
Data frame = 1, 4, 1, 3, 2, 4, 2, 1)), row.names = c(NA, 30L), class = "data.frame")
---Overview---
outcome_variable_name mean mean_LL mean_UL median median_LL median_UL
1 bk 2.266667 1.757755 2.775578 2 1 3
2 wc 1.833333 1.506871 2.159795 2 1 2
sd min max q1 q3 n missing df mean_SE median_SE
1 1.3628908 1 5 1 3 30 0 29 0.2488287 0.4936052
2 0.8742813 1 4 1 2 30 0 29 0.1596212 0.2468026
-- es_mean_difference --
type comparison_measure_name reference_measure_name effect
1 Comparison wc bk wc
2 Reference wc bk bk
11 Difference wc bk wc ‒ bk
effect_size LL UL SE df ta_LL ta_UL
1 1.8333333 1.5068713 2.15979534 0.1596212 29 1.5621166 2.1045500
2 2.2666667 1.7577549 2.77557845 0.2488287 29 1.8438751 2.6894582
11 -0.4333333 -0.9398777 0.07321103 0.2476711 29 -0.8541581 -0.0125086
-- es_smd --
comparison_measure_name reference_measure_name effect effect_size LL
1 wc bk wc - bk -0.3718897 -0.8165806
UL numerator denominator SE d_biased df
1 0.059636 -0.4333333 1.144954 0.2235287 -0.3718897 29
This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.
-- es_r --
x_variable_name y_variable_name effect effect_size LL UL
1 bk wc bk and wc 0.32798 -0.04226176 0.6119942
SE n df ta_LL ta_UL
1 0.1657199 30 28 0.01835401 0.5726524
-- es_median_difference --
type comparison_measure_name reference_measure_name effect effect_size
Comparison wc bk wc 2
1 Reference wc bk bk 2
2 Difference wc bk wc ‒ bk 0
LL UL SE ta_LL ta_UL
1.000000 2.000000 0.2468026 1.000000 2.000000
1 1.000000 3.000000 0.4936052 1.000000 3.000000
2 -1.109202 1.109202 0.5659300 -1.109202 1.109202
-- es_mean_ratio --
comparison_measure_name reference_measure_name effect effect_size LL
1 wc bk wc / bk 0.8088235 0.6385273
UL comparison_mean reference_mean
1 1.024538 1.833333 2.266667
[1] "This effect-size measure is appropriate only for true ratio scales."
-- es_median_ratio --
comparison_measure_name reference_measure_name effect effect_size LL
1 wc bk wc / bk 1 0.5239318
UL comparison_median reference_median
1 1.908646 2 2
[1] "This effect-size measure is appropriate only for true ratio scales."
Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.