tests/testthat/_snaps/estimate_mdiff_two.md

Compare estimate_mdiff_two to ESCI_Data_two, penlaptop1

Code
  estimate
Output
  Analysis of raw data:
  Outcome variable(s) = % Transcription
  Grouping variable(s) = Note-taking type

  ---Overview---
    outcome_variable_name grouping_variable_name grouping_variable_level  mean
  1       % Transcription       Note-taking type              Ref-Laptop  6.88
  2       % Transcription       Note-taking type                Comp-Pen 12.09
      mean_LL   mean_UL   sd   n  df   mean_SE
  1  5.412432  8.347568 4.22  48 149 0.7426914
  2 11.088156 13.091844 5.52 103 149 0.5070029

  -- es_mean_difference --
          type outcome_variable_name grouping_variable_name                effect
  1 Comparison       % Transcription       Note-taking type              Comp-Pen
  2  Reference       % Transcription       Note-taking type            Ref-Laptop
  3 Difference       % Transcription       Note-taking type Comp-Pen ‒ Ref-Laptop
    effect_size        LL        UL        SE  df     ta_LL     ta_UL
  1       12.09 11.088156 13.091844 0.5070029 149 11.250837 12.929163
  2        6.88  5.412432  8.347568 0.7426914 149  5.650738  8.109262
  3        5.21  3.433079  6.986921 0.8992455 149  3.721619  6.698381

  -- es_smd --
    outcome_variable_name grouping_variable_name                effect
  1       % Transcription       Note-taking type Comp-Pen ‒ Ref-Laptop
    effect_size        LL       UL numerator denominator        SE  df d_biased
  1    1.007425 0.6448059 1.366989      5.21    5.145517 0.1842337 149 1.012532
  This standardized mean difference is called d_s because the standardizer used was s_p. d_s has been corrected for bias. Correction for bias can be important when df < 50.  See the rightmost column for the biased value.


  Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
Code
  estimate_99
Output
  Analysis of raw data:
  Outcome variable(s) = % Transcription
  Grouping variable(s) = Note-taking type

  ---Overview---
    outcome_variable_name grouping_variable_name grouping_variable_level  mean
  1       % Transcription       Note-taking type                  Laptop  6.88
  2       % Transcription       Note-taking type                     Pen 12.09
      mean_LL   mean_UL   sd   n  df   mean_SE
  1  4.942149  8.817851 4.22  48 149 0.7426914
  2 10.767114 13.412886 5.52 103 149 0.5070029

  -- es_mean_difference --
          type outcome_variable_name grouping_variable_name       effect
  1 Comparison       % Transcription       Note-taking type          Pen
  2  Reference       % Transcription       Note-taking type       Laptop
  3 Difference       % Transcription       Note-taking type Pen ‒ Laptop
    effect_size        LL        UL        SE  df     ta_LL     ta_UL
  1       12.09 10.767114 13.412886 0.5070029 149 10.897714 13.282286
  2        6.88  4.942149  8.817851 0.7426914 149  5.133461  8.626539
  3        5.21  2.863664  7.556336 0.8992455 149  3.095303  7.324697

  -- es_smd --
    outcome_variable_name grouping_variable_name       effect effect_size
  1       % Transcription       Note-taking type Pen ‒ Laptop    1.007425
           LL      UL numerator denominator        SE  df d_biased
  1 0.5315012 1.48061      5.21    5.145517 0.1842337 149 1.012532
  This standardized mean difference is called d_s because the standardizer used was s_p. d_s has been corrected for bias. Correction for bias can be important when df < 50.  See the rightmost column for the biased value.


  Note: LL and UL are lower and upper boundaries of confidence intervals with 99% expected coverage.
Code
  mytest
Output
  $properties
  $properties$effect_size_name
  [1] "mean"

  $properties$alpha
  [1] 0.05

  $properties$interval_null
  [1] FALSE

  $properties$rope
  [1] 0 0

  $properties$rope_units
  [1] "raw"


  $point_null
              test_type outcome_variable_name                effect null_words
  1 Nil Hypothesis Test       % Transcription Comp-Pen ‒ Ref-Laptop       0.00
    confidence       LL       UL                          CI
  1         95 3.433079 6.986921 95% CI [3.433079, 6.986921]
                         CI_compare        t  df            p p_result
  1 The 95% CI does not contain H_0 5.793746 149 3.951374e-08 p < 0.05
    null_decision                                           conclusion
  1    Reject H_0 At α = 0.05, 0.00 is not a plausible value of μ_diff
    significant
  1        TRUE
Code
  estimate
Output
  Analysis of raw data:
  Data frame = data
  Outcome variable(s) = transcription
  Grouping variable(s) = condition

  ---Overview---
    outcome_variable_name grouping_variable_name grouping_variable_level
  1         transcription              condition                     Pen
  2         transcription              condition                  Laptop
         mean   mean_LL  mean_UL median median_LL median_UL       sd min  max
  1  8.811765  6.724559 10.89897    8.6  6.598482  10.60152 4.749339 1.0 20.1
  2 14.519355 12.333487 16.70522   12.8  9.469511  16.13049 7.285576 1.2 34.7
      q1     q3  n missing df  mean_SE median_SE
  1 5.20 11.275 34       0 63 1.044470  1.021201
  2 9.45 17.850 31       0 63 1.093842  1.699260

  -- es_mean_difference --
          type outcome_variable_name grouping_variable_name       effect
  1 Comparison         transcription              condition       Laptop
  2  Reference         transcription              condition          Pen
  3 Difference         transcription              condition Laptop ‒ Pen
    effect_size        LL        UL       SE df     ta_LL     ta_UL
  1   14.519355 12.333487 16.705223 1.093842 63 12.693293 16.345416
  2    8.811765  6.724559 10.898971 1.044470 63  7.068125 10.555405
  3    5.707590  2.685265  8.729915 1.512417 63  3.182757  8.232423

  -- es_median_difference --
          type outcome_variable_name grouping_variable_name       effect
  1 Comparison         transcription              condition       Laptop
  2  Reference         transcription              condition          Pen
  3 Difference         transcription              condition Laptop ‒ Pen
    effect_size        LL        UL       SE     ta_LL     ta_UL
  1        12.8 9.4695114 16.130489 1.699260 10.004966 15.595034
  2         8.6 6.5984823 10.601518 1.021201  6.920273 10.279727
  3         4.2 0.3143563  8.085644 1.982508  0.939065  7.460935

  -- es_smd --
    outcome_variable_name grouping_variable_name       effect effect_size
  1         transcription              condition Laptop ‒ Pen   0.9259595
           LL       UL numerator denominator        SE df  d_biased
  1 0.4098655 1.435414   5.70759    6.090252 0.2616245 63 0.9371681
  This standardized mean difference is called d_s because the standardizer used was s_p. d_s has been corrected for bias. Correction for bias can be important when df < 50.  See the rightmost column for the biased value.

  -- es_mean_ratio --
    outcome_variable_name grouping_variable_name       effect effect_size
  1         transcription              condition Laptop / Pen    1.647724
          LL       UL comparison_mean reference_mean
  1 1.273045 2.132677        14.51935       8.811765
  [1] "This effect-size measure is appropriate only for true ratio scales."

  -- es_median_ratio --
    outcome_variable_name grouping_variable_name       effect effect_size      LL
  1         transcription              condition Laptop / Pen    1.488372 1.06252
          UL comparison_median reference_median
  1 2.084903              12.8              8.6
  [1] "This effect-size measure is appropriate only for true ratio scales."


  Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
Code
  mytest
Output
  $properties
  $properties$effect_size_name
  [1] "mean"

  $properties$alpha
  [1] 0.05

  $properties$interval_null
  [1] FALSE

  $properties$rope
  [1] 0 0

  $properties$rope_units
  [1] "raw"


  $point_null
              test_type outcome_variable_name       effect null_words confidence
  1 Nil Hypothesis Test         transcription Laptop ‒ Pen       0.00         95
          LL       UL                          CI                      CI_compare
  1 2.685265 8.729915 95% CI [2.685265, 8.729915] The 95% CI does not contain H_0
          t df            p p_result null_decision
  1 3.77382 63 0.0003579282 p < 0.05    Reject H_0
                                              conclusion significant
  1 At α = 0.05, 0.00 is not a plausible value of μ_diff        TRUE
Code
  estimate_99
Output
  Analysis of raw data:
  Data frame = data
  Outcome variable(s) = transcription
  Grouping variable(s) = condition

  ---Overview---
    outcome_variable_name grouping_variable_name grouping_variable_level
  1         transcription              condition                     Pen
  2         transcription              condition                  Laptop
         mean   mean_LL  mean_UL median median_LL median_UL       sd min  max
  1  8.811765  6.037502 11.58603    8.6  5.969560  11.23044 4.749339 1.0 20.1
  2 14.519355 11.613953 17.42476   12.8  8.422996  17.17700 7.285576 1.2 34.7
      q1     q3  n missing df  mean_SE median_SE
  1 5.20 11.275 34       0 63 1.044470  1.021201
  2 9.45 17.850 31       0 63 1.093842  1.699260

  -- es_mean_difference --
          type outcome_variable_name grouping_variable_name       effect
  1 Comparison         transcription              condition       Laptop
  2  Reference         transcription              condition          Pen
  3 Difference         transcription              condition Laptop ‒ Pen
    effect_size        LL       UL       SE df     ta_LL     ta_UL
  1   14.519355 11.613953 17.42476 1.093842 63 11.908346 17.130363
  2    8.811765  6.037502 11.58603 1.044470 63  6.318608 11.304922
  3    5.707590  1.690390  9.72479 1.512417 63  2.097438  9.317742

  -- es_median_difference --
          type outcome_variable_name grouping_variable_name       effect
  1 Comparison         transcription              condition       Laptop
  2  Reference         transcription              condition          Pen
  3 Difference         transcription              condition Laptop ‒ Pen
    effect_size         LL        UL       SE      ta_LL     ta_UL
  1        12.8  8.4229960 17.177004 1.699260  8.8469299 16.753070
  2         8.6  5.9695599 11.230440 1.021201  6.2243306 10.975669
  3         4.2 -0.9066015  9.306602 1.982508 -0.4120026  8.812003

  -- es_smd --
    outcome_variable_name grouping_variable_name       effect effect_size
  1         transcription              condition Laptop ‒ Pen   0.9259595
           LL      UL numerator denominator        SE df  d_biased
  1 0.2490821 1.59688   5.70759    6.090252 0.2616245 63 0.9371681
  This standardized mean difference is called d_s because the standardizer used was s_p. d_s has been corrected for bias. Correction for bias can be important when df < 50.  See the rightmost column for the biased value.

  -- es_mean_ratio --
    outcome_variable_name grouping_variable_name       effect effect_size
  1         transcription              condition Laptop / Pen    1.647724
          LL       UL comparison_mean reference_mean
  1 1.169397 2.321705        14.51935       8.811765
  [1] "This effect-size measure is appropriate only for true ratio scales."

  -- es_median_ratio --
    outcome_variable_name grouping_variable_name       effect effect_size
  1         transcription              condition Laptop / Pen    1.488372
           LL       UL comparison_median reference_median
  1 0.9557473 2.317821              12.8              8.6
  [1] "This effect-size measure is appropriate only for true ratio scales."


  Note: LL and UL are lower and upper boundaries of confidence intervals with 99% expected coverage.

Compare estimate_mdiff_two to statpsych::ci.mean2 example

Code
  estimate
Output
  Analysis of raw data:
  Outcome variable(s) = My outcome variable
  Grouping variable(s) = My grouping variable

  ---Overview---
    outcome_variable_name grouping_variable_name grouping_variable_level mean
  1   My outcome variable   My grouping variable                 Control 10.3
  2   My outcome variable   My grouping variable                 Treated 15.4
      mean_LL  mean_UL   sd  n df   mean_SE
  1  8.924592 11.67541 2.15 20 19 0.4807546
  2 14.056336 16.74366 2.67 30 29 0.4874731

  -- es_mean_difference --
          type outcome_variable_name grouping_variable_name            effect
  1 Comparison   My outcome variable   My grouping variable           Treated
  2  Reference   My outcome variable   My grouping variable           Control
  3 Difference   My outcome variable   My grouping variable Treated ‒ Control
    effect_size        LL        UL        SE       df     ta_LL     ta_UL
  1        15.4 14.056336 16.743664 0.4874731 29.00000 14.199831 16.600169
  2        10.3  8.924592 11.675408 0.4807546 19.00000  9.079132 11.520868
  3         5.1  3.260617  6.939383 0.6846568 46.17476  3.450073  6.749927

  -- es_smd --
    outcome_variable_name grouping_variable_name            effect effect_size
  1   My outcome variable   My grouping variable Treated ‒ Control    2.070897
          LL       UL numerator denominator        SE       df d_biased
  1 1.187684 3.013583       5.1    2.423984 0.5604936 47.99877 2.103974
  This standardized mean difference is called d_avg because the standardizer used was s_avg. d_avg has been corrected for bias. Correction for bias can be important when df < 50.  See the rightmost column for the biased value.


  Note: LL and UL are lower and upper boundaries of confidence intervals with 99% expected coverage.

Compare estimate_mdiff_two to statpsych::ci.median2 example

Code
  estimate
Output
  Analysis of raw data:
  Data frame = data
  Outcome variable(s) = myoutcome
  Grouping variable(s) = mycondition

  ---Overview---
    outcome_variable_name grouping_variable_name grouping_variable_level mean
  1             myoutcome            mycondition                 Group 1 34.2
  2             myoutcome            mycondition                 Group 2 41.5
     mean_LL  mean_UL median median_LL median_UL       sd min max    q1    q3  n
  1 28.33027 40.06973   34.5  27.21846  41.78154 5.711587  26  43 29.75 38.50 10
  2 34.87072 48.12928   43.0  34.59823  51.40177 6.450667  31  49 36.75 46.75 10
    missing df  mean_SE median_SE
  1       0  9 1.806162  2.826871
  2       0  9 2.039880  3.261774

  -- es_mean_difference --
          type outcome_variable_name grouping_variable_name            effect
  1 Comparison             myoutcome            mycondition           Group 1
  2  Reference             myoutcome            mycondition           Group 2
  3 Difference             myoutcome            mycondition Group 1 ‒ Group 2
    effect_size        LL         UL       SE       df     ta_LL      ta_UL
  1        34.2  28.33027 40.0697304 1.806162  9.00000  29.10403 39.2959748
  2        41.5  34.87072 48.1292751 2.039880  9.00000  35.74460 47.2553953
  3        -7.3 -15.15592  0.5559194 2.724579 17.73989 -14.26401 -0.3359923

  -- es_median_difference --
          type outcome_variable_name grouping_variable_name            effect
  1 Comparison             myoutcome            mycondition           Group 1
  2  Reference             myoutcome            mycondition           Group 2
  3 Difference             myoutcome            mycondition Group 1 ‒ Group 2
    effect_size        LL        UL       SE     ta_LL     ta_UL
  1        34.5  27.21846 41.781536 2.826871  27.92372 41.076285
  2        43.0  34.59823 51.401773 3.261774  35.41198 50.588021
  3        -8.5 -19.61803  2.618029 4.316291 -18.54119  1.541194

  -- es_smd --
    outcome_variable_name grouping_variable_name            effect effect_size
  1             myoutcome            mycondition Group 1 ‒ Group 2   -1.146719
           LL         UL numerator denominator        SE       df  d_biased
  1 -2.448433 0.07467368      -7.3    6.092345 0.6550008 17.73989 -1.198225
  This standardized mean difference is called d_avg because the standardizer used was s_avg. d_avg has been corrected for bias. Correction for bias can be important when df < 50.  See the rightmost column for the biased value.

  -- es_mean_ratio --
    outcome_variable_name grouping_variable_name            effect effect_size
  1             myoutcome            mycondition Group 1 / Group 2   0.8240964
           LL      UL comparison_mean reference_mean
  1 0.6694745 1.01443            34.2           41.5
  [1] "This effect-size measure is appropriate only for true ratio scales."

  -- es_median_ratio --
    outcome_variable_name grouping_variable_name            effect effect_size
  1             myoutcome            mycondition Group 1 / Group 2   0.8023256
           LL      UL comparison_median reference_median
  1 0.5919106 1.08754              34.5               43
  [1] "This effect-size measure is appropriate only for true ratio scales."


  Note: LL and UL are lower and upper boundaries of confidence intervals with 99% expected coverage.

Compare estimate_mdiff_two to statpsych::ci.ratio.mean2 and ci.ratio.median2 example

Code
  estimate
Output
  Analysis of raw data:
  Data frame = data
  Outcome variable(s) = myoutcome
  Grouping variable(s) = mycondition

  ---Overview---
    outcome_variable_name grouping_variable_name grouping_variable_level     mean
  1             myoutcome            mycondition                 Group 1 41.50000
  2             myoutcome            mycondition                 Group 2 36.38462
     mean_LL  mean_UL median median_LL median_UL       sd min max    q1    q3  n
  1 34.87072 48.12928     43  34.59823  51.40177 6.450667  31  49 36.75 46.75 10
  2 30.67493 42.09430     37  29.66461  44.33539 6.739664  26  49 32.00 40.00 13
    missing df  mean_SE median_SE
  1       0  9 2.039880  3.261774
  2       0 12 1.869247  2.847778

  -- es_mean_difference --
          type outcome_variable_name grouping_variable_name            effect
  1 Comparison             myoutcome            mycondition           Group 1
  2  Reference             myoutcome            mycondition           Group 2
  3 Difference             myoutcome            mycondition Group 1 ‒ Group 2
    effect_size        LL       UL       SE       df     ta_LL    ta_UL
  1   41.500000 34.870725 48.12928 2.039880  9.00000 35.744605 47.25540
  2   36.384615 30.674928 42.09430 1.869247 12.00000 31.373169 41.39606
  3    5.115385 -2.760215 12.99098 2.766802 19.92414 -1.881322 12.11209

  -- es_median_difference --
          type outcome_variable_name grouping_variable_name            effect
  1 Comparison             myoutcome            mycondition           Group 1
  2  Reference             myoutcome            mycondition           Group 2
  3 Difference             myoutcome            mycondition Group 1 ‒ Group 2
    effect_size        LL       UL       SE     ta_LL    ta_UL
  1          43 34.598227 51.40177 3.261774 35.411979 50.58802
  2          37 29.664610 44.33539 2.847778 30.375078 43.62492
  3           6 -5.153373 17.15337 4.330013 -4.073115 16.07312

  -- es_smd --
    outcome_variable_name grouping_variable_name            effect effect_size
  1             myoutcome            mycondition Group 1 ‒ Group 2   0.7470702
            LL       UL numerator denominator       SE       df  d_biased
  1 -0.3558306 1.890873  5.115385    6.596749 0.517002 20.79173 0.7754403
  This standardized mean difference is called d_avg because the standardizer used was s_avg. d_avg has been corrected for bias. Correction for bias can be important when df < 50.  See the rightmost column for the biased value.

  -- es_mean_ratio --
    outcome_variable_name grouping_variable_name            effect effect_size
  1             myoutcome            mycondition Group 1 / Group 2    1.140592
           LL       UL comparison_mean reference_mean
  1 0.9324275 1.395229            41.5       36.38462
  [1] "This effect-size measure is appropriate only for true ratio scales."

  -- es_median_ratio --
    outcome_variable_name grouping_variable_name            effect effect_size
  1             myoutcome            mycondition Group 1 / Group 2    1.162162
           LL       UL comparison_median reference_median
  1 0.8642465 1.562773                43               37
  [1] "This effect-size measure is appropriate only for true ratio scales."


  Note: LL and UL are lower and upper boundaries of confidence intervals with 99% expected coverage.
Code
  estimate
Output
  Analysis of raw data:
  Data frame = data
  Outcome variable(s) = myoutcome
  Grouping variable(s) = mycondition

  ---Overview---
    outcome_variable_name grouping_variable_name grouping_variable_level     mean
  1             myoutcome            mycondition                 Group 1 23.70000
  2             myoutcome            mycondition                 Group 2 25.46154
      mean_LL  mean_UL median  median_LL median_UL       sd min max   q1   q3  n
  1 -2.399473 49.79947   37.5 -0.8577566  75.85776 36.48455 -47  49 31.5 45.5 10
  2  8.614096 42.30898   35.0 28.1304096  41.86959 27.87955 -39  49 27.0 40.0 13
    missing df   mean_SE median_SE
  1       0  9 11.537427 19.570644
  2       0 12  7.732396  3.504957

  -- es_mean_difference --
          type outcome_variable_name grouping_variable_name            effect
  1 Comparison             myoutcome            mycondition           Group 1
  2  Reference             myoutcome            mycondition           Group 2
  3 Difference             myoutcome            mycondition Group 1 ‒ Group 2
    effect_size         LL       UL        SE       df      ta_LL    ta_UL
  1   23.700000  -2.399473 49.79947 11.537427  9.00000   2.550593 44.84941
  2   25.461538   8.614096 42.30898  7.732396 12.00000  11.680186 39.24289
  3   -1.761538 -31.144112 27.62103 13.888922 16.41673 -25.972286 22.44921

  -- es_median_difference --
          type outcome_variable_name grouping_variable_name            effect
  1 Comparison             myoutcome            mycondition           Group 1
  2  Reference             myoutcome            mycondition           Group 2
  3 Difference             myoutcome            mycondition Group 1 ‒ Group 2
    effect_size          LL       UL        SE      ta_LL    ta_UL
  1        37.5  -0.8577566 75.85776 19.570644   5.309156 69.69084
  2        35.0  28.1304096 41.86959  3.504957  29.234858 40.76514
  3         2.5 -36.4680480 41.46805 19.882022 -30.203017 35.20302

  -- es_smd --
    outcome_variable_name grouping_variable_name            effect effect_size
  1             myoutcome            mycondition Group 1 ‒ Group 2 -0.05195366
            LL        UL numerator denominator        SE       df    d_biased
  1 -0.8920995 0.7850884 -1.761538    32.46838 0.4541995 17.98107 -0.05425397
  This standardized mean difference is called d_avg because the standardizer used was s_avg. d_avg has been corrected for bias. Correction for bias can be important when df < 50.  See the rightmost column for the biased value.

  -- es_mean_ratio --
    outcome_variable_name grouping_variable_name            effect effect_size
  1             myoutcome            mycondition Group 1 / Group 2   0.9308157
          LL       UL comparison_mean reference_mean
  1 0.275107 3.149385            23.7       25.46154
  [1] "WARNING!  Your dataset includes negative values.  This effect-size measure is appropriate only for true ratio scales."

  -- es_median_ratio --
    outcome_variable_name grouping_variable_name            effect effect_size LL
  1             myoutcome            mycondition Group 1 / Group 2          NA NA
    UL comparison_median reference_median
  1 NA                NA               NA
  [1] "WARNING!  Your dataset includes negative values.  This effect-size measure is appropriate only for true ratio scales."


  Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
  Warnings:
  * The ratio between group effect size is appropriate only for true ratio scales where values < 0 are impossible.  Your data include at least one negative value, so the requested ratio effect size is not reported.


Try the esci package in your browser

Any scripts or data that you put into this service are public.

esci documentation built on April 3, 2025, 5:52 p.m.