Nothing
Code
estimate
Output
Analysis of raw data:
Outcome variable(s) = My outcome variable
---Overview---
outcome_variable_name outcome_variable_level cases n P P_LL
1 My outcome variable Affected 8 22 0.3636364 0.1976126
2 My outcome variable Not Affected 14 22 0.6363636 0.4283818
P_UL P_SE P_adjusted ta_LL ta_UL
1 0.5716182 0.09541133 0.3846154 0.2276777 0.5415531
2 0.8023874 0.09541133 0.6153846 0.4584469 0.7723223
-- es_proportion_difference --
outcome_variable_name case_label effect
1 My outcome variable P_ Affected My outcome variable
2 My outcome variable P_ Affected Reference value
3 My outcome variable P_ Affected My outcome variable ‒ Reference value
effect_size LL UL SE effect_size_adjusted ta_LL
1 0.3636364 0.1976126 0.57161816 0.09541133 0.3846154 0.2276777
2 0.5000000 NA NA NA NA NA
3 -0.1363636 -0.3023874 0.07161816 0.09541133 -0.1153846 -0.2723223
ta_UL cases n type
1 0.54155306 8 22 Comparison
2 NA 8 22 Reference
3 0.04155306 8 22 Difference
Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
Code
estimate
Output
Analysis of raw data:
Outcome variable(s) = dep_status
---Overview---
outcome_variable_name outcome_variable_level cases n P P_LL
1 dep_status Depressed 8 22 0.3636364 0.1388521
2 dep_status NotDepressed 14 22 0.6363636 0.3696213
3 dep_status Missing 3 NA NA NA
P_UL P_SE P_adjusted ta_LL ta_UL
1 0.6303787 0.09541133 0.3846154 0.1626554 0.6065753
2 0.8611479 0.09541133 0.6153846 0.3934247 0.8373446
3 NA NA NA NA NA
-- es_proportion_difference --
outcome_variable_name case_label effect effect_size
1 dep_status P_ Depressed dep_status 0.3636364
2 dep_status P_ Depressed Reference value 0.0000000
3 dep_status P_ Depressed dep_status ‒ Reference value 0.3636364
LL UL SE effect_size_adjusted ta_LL ta_UL cases
1 0.1388521 0.6303787 0.09541133 0.3846154 0.1626554 0.6065753 8
2 NA NA NA NA NA NA 8
3 0.1388521 0.6303787 0.09541133 0.3846154 0.1626554 0.6065753 8
n type
1 22 Comparison
2 22 Reference
3 22 Difference
[1] "Missing values were present; these were *not* counted as part of the total sample size."
Note: LL and UL are lower and upper boundaries of confidence intervals with 99% expected coverage.
Code
estimate
Output
Analysis of raw data:
Data frame = data
Outcome variable(s) = depression_status
---Overview---
outcome_variable_name outcome_variable_level cases n P P_LL
1 depression_status Depressed 8 22 0.3636364 0.1388521
2 depression_status NotDepressed 14 22 0.6363636 0.3696213
3 depression_status Missing 3 NA NA NA
P_UL P_SE P_adjusted ta_LL ta_UL
1 0.6303787 0.09541133 0.3846154 0.1626554 0.6065753
2 0.8611479 0.09541133 0.6153846 0.3934247 0.8373446
3 NA NA NA NA NA
-- es_proportion_difference --
outcome_variable_name case_label effect
1 depression_status P_ Depressed depression_status
2 depression_status P_ Depressed Reference value
3 depression_status P_ Depressed depression_status ‒ Reference value
effect_size LL UL SE effect_size_adjusted ta_LL
1 0.3636364 0.1388521 0.6303787 0.09541133 0.3846154 0.1626554
2 0.0000000 NA NA NA NA NA
3 0.3636364 0.1388521 0.6303787 0.09541133 0.3846154 0.1626554
ta_UL cases n type
1 0.6065753 8 22 Comparison
2 NA 8 22 Reference
3 0.6065753 8 22 Difference
[1] "Missing values were present; these were *not* counted as part of the total sample size."
Note: LL and UL are lower and upper boundaries of confidence intervals with 99% expected coverage.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.