avar | R Documentation |
Calculates the asymptotic variance (or variance - covariance matrix in the multidimensional case) of an estimator, given a specified family of distributions and the true parameter values.
avar(distr, type, ...)
vbern(prob, type = "mle")
vbinom(size, prob, type = "mle")
vcat(prob, type = "mle")
vdirichlet(alpha, type = "mle")
vexp(rate, type = "mle")
vgamma(shape, scale, type = "mle")
vgeom(prob, type = "mle")
vlaplace(mu, sigma, type = "mle")
vmultinom(size, prob, type = "mle")
vnbinom(size, prob, type = "mle")
vnorm(mean, sd, type = "mle")
vpois(lambda, type = "mle")
vweib(shape, scale, type = "mle")
distr |
A subclass of |
type |
character, case ignored. The estimator type (mle, me, or same). |
... |
extra arguments. |
alpha , mu , sigma , size , prob , shape , rate , scale , mean , sd , lambda |
numeric. Distribution parameters. |
A named matrix. The asymptotic covariance matrix of the estimator.
Ye, Z.-S. & Chen, N. (2017), Closed-form estimators for the gamma distribution derived from likelihood equations, The American Statistician 71(2), 177–181.
Van der Vaart, A. W. (2000), Asymptotic statistics, Vol. 3, Cambridge university press.
Tamae, H., Irie, K. & Kubokawa, T. (2020), A score-adjusted approach to closed-form estimators for the gamma and beta distributions, Japanese Journal of Statistics and Data Science 3, 543–561.
Mathal, A. & Moschopoulos, P. (1992), A form of multivariate gamma distribution, Annals of the Institute of Statistical Mathematics 44, 97–106.
Oikonomidis, I. & Trevezas, S. (2023), Moment-Type Estimators for the Dirichlet and the Multivariate Gamma Distributions, arXiv, https://arxiv.org/abs/2311.15025
avar_mle, avar_me, avar_same
# -----------------------------------------------------
# Beta Distribution Example
# -----------------------------------------------------
# Simulation
set.seed(1)
shape1 <- 1
shape2 <- 2
D <- Beta(shape1, shape2)
x <- r(D)(100)
# Likelihood - The ll Functions
llbeta(x, shape1, shape2)
ll(x, c(shape1, shape2), D)
ll(x, c(shape1, shape2), "beta")
# Point Estimation - The e Functions
ebeta(x, type = "mle")
ebeta(x, type = "me")
ebeta(x, type = "same")
mle(x, D)
me(x, D)
same(x, D)
estim(x, D, type = "mle")
# Asymptotic Variance - The v Functions
vbeta(shape1, shape2, type = "mle")
vbeta(shape1, shape2, type = "me")
vbeta(shape1, shape2, type = "same")
avar_mle(D)
avar_me(D)
avar_same(D)
avar(D, type = "mle")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.