inference.wilcox: Wilcox inference for event study estimator

Description Usage Arguments Value Author(s) See Also Examples

View source: R/inference.wilcox.R

Description

This function does wilcox inference to generate distribution of average of all the cumulative returns time-series.

Usage

1
2
3
4
5
inference.wilcox(es.w,
                to.plot = TRUE,
                xlab = "Event time", 
                ylab = "Cumulative returns of response series", 
	        main = "Event study plot")

Arguments

es.w

a zoo object indexed by event time: the “z.e” component of the list returned by the phys2eventtime function. The object should consist of more than one series.

to.plot

a ‘logical’ indicating whether to generate an event study plot of the inference estimated. Defaults to ‘TRUE’.

xlab

the x-axis label of the generated plot. Used if “to.plot” is ‘TRUE’.

ylab

the y-axis label of the generated plot. Used if “to.plot” is ‘TRUE’.

main

main title of the plot. Used if “to.plot” is ‘TRUE’.

Value

A ‘matrix’ with 3 columns: the lower confidence interval (CI), the mean, and the upper CI which are the result of wilcox inference.

Author(s)

Vikram Bahure, Vimal Balasubramaniam

See Also

phys2eventtime inference.bootstrap inference.classic

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
data(StockPriceReturns)
data(SplitDates)

es.results <- phys2eventtime(z = StockPriceReturns,
                             events = SplitDates,
                             width = 5)
es.w <- window(es.results$z.e, start = -5, end = +5)
eventtime <- remap.cumsum(es.w, is.pc = FALSE, base = 0)

inference.wilcox(es.w = eventtime, to.plot = FALSE)

Example output

Loading required package: zoo

Attaching package: 'zoo'

The following objects are masked from 'package:base':

    as.Date, as.Date.numeric

Loading required package: xts
           2.5%     Median    97.5%
 [1,]  0.000000  0.0000000 0.000000
 [2,] -3.025859  0.1497258 1.579292
 [3,] -2.506552  0.6534009 1.996258
 [4,] -3.366026 -0.7995244 4.550954
 [5,] -1.940777  0.3971073 1.492011
 [6,] -4.251821 -1.4007510 3.480677
 [7,] -7.661620 -1.5742313 7.100768
 [8,] -7.131790 -0.7340725 6.415300
 [9,] -5.771472 -0.1045928 4.672834
[10,] -5.035580 -0.4333581 6.998727
[11,] -3.915270 -1.3041734 6.782042

eventstudies documentation built on July 1, 2020, 10:26 p.m.