Description Usage Arguments Value Author(s) See Also Examples
View source: R/inference.wilcox.R
This function does wilcox inference to generate distribution of average of all the cumulative returns time-series.
1 2 3 4 5 | inference.wilcox(es.w,
to.plot = TRUE,
xlab = "Event time",
ylab = "Cumulative returns of response series",
main = "Event study plot")
|
es.w |
a zoo object indexed by event time: the “z.e”
component of the list returned by the |
to.plot |
a ‘logical’ indicating whether to generate an event study plot of the inference estimated. Defaults to ‘TRUE’. |
xlab |
the x-axis label of the generated plot. Used if “to.plot” is ‘TRUE’. |
ylab |
the y-axis label of the generated plot. Used if “to.plot” is ‘TRUE’. |
main |
main title of the plot. Used if “to.plot” is ‘TRUE’. |
A ‘matrix’ with 3 columns: the lower confidence interval (CI), the mean, and the upper CI which are the result of wilcox inference.
Vikram Bahure, Vimal Balasubramaniam
phys2eventtime
inference.bootstrap
inference.classic
1 2 3 4 5 6 7 8 9 10 | data(StockPriceReturns)
data(SplitDates)
es.results <- phys2eventtime(z = StockPriceReturns,
events = SplitDates,
width = 5)
es.w <- window(es.results$z.e, start = -5, end = +5)
eventtime <- remap.cumsum(es.w, is.pc = FALSE, base = 0)
inference.wilcox(es.w = eventtime, to.plot = FALSE)
|
Loading required package: zoo
Attaching package: 'zoo'
The following objects are masked from 'package:base':
as.Date, as.Date.numeric
Loading required package: xts
2.5% Median 97.5%
[1,] 0.000000 0.0000000 0.000000
[2,] -3.025859 0.1497258 1.579292
[3,] -2.506552 0.6534009 1.996258
[4,] -3.366026 -0.7995244 4.550954
[5,] -1.940777 0.3971073 1.492011
[6,] -4.251821 -1.4007510 3.480677
[7,] -7.661620 -1.5742313 7.100768
[8,] -7.131790 -0.7340725 6.415300
[9,] -5.771472 -0.1045928 4.672834
[10,] -5.035580 -0.4333581 6.998727
[11,] -3.915270 -1.3041734 6.782042
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.