mop.q | R Documentation |
This function compute estimate of high quantile or value-at-risk (VAR) using mean of order p (MOP) method.
mop.q(x, k, p, q, method = c("MOP", "RBMOP"))
x |
Data vector. |
k |
a vector of number of upper order statistics. |
p |
a vector of mean order. |
q |
quantile level. |
method |
Method used, ("MOP", default) and reduced-bias MOP ("RBMOP"). |
For heavy tails, Gomes et al. (2013) introduces a new class of high quantile estimators based on a class of mean of order p (MOP) extreme value index (EVI) estimators is givin by
Q(k) = (X_{n-k:n}) (k/nq)^{H_p(k)},
where H_p(k)
is MOP EVI estimator and X_{i:n}
is order statistic.
a matrix of EVI and VaR estimates, corresponds to k
row and p
columns. When Method = "RBMOP"
shape and scale second order parameters estimates are also returned.
B G Manjunath bgmanjunath@gmail.com
Brilhante, M.F., Gomes, M.I. and Pestana, D. (2013). A simple generalisation of the Hill estimator. Computational Statistics and Data Analysis, 57, 518– 535.
Beran, J., Schell, D. and Stehlik, M. (2013). The harmonic moment tail index estimator: asymptotic distribution and robustness. Ann Inst Stat Math, Published Online.
Gomes, M.I., Brilhante, M.F. and Pestana, D. (2013). New reduced-bias estimators of a positive extreme value index. Submitted article.
Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest observations. J. Amer. Statist. Assoc., 73, 812– 815.
mop
# generate random samples
x = rfrechet(50000, loc = 0, scale = 1,shape = 1/0.5)
# estimate EVI and high quantile at level q
mop.q(x,c(1,500,5000,49999), c(-1,0,1),0.5,"RBMOP")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.