View source: R/00_GridSearch.R
GridSearch | R Documentation |
Performs a grid search to find optimal parameters for different analysis methods. Supports Biclustering, LCA (Latent Class Analysis), and LRA (Latent Rank Analysis).
GridSearch(
obj,
max_ncls = 10,
max_nfld = 10,
fun = "Biclustering",
index = "BIC",
...
)
obj |
Input data matrix or object to be analyzed |
max_ncls |
Maximum number of classes/clusters to test (default: 10) |
max_nfld |
Maximum number of fields to test for Biclustering (default: 10) |
fun |
Function name to use for analysis. Options: "Biclustering", "LCA", "LRA" (default: "Biclustering") |
index |
Fit index to optimize from TestFitIndices returned by each function. Options: "AIC", "BIC", etc. (default: "BIC") |
... |
Additional arguments passed to the analysis function |
A list containing: For Biclustering:
index_matrix |
Matrix of fit indices for each ncls/nfld combination |
optimal_ncls |
Optimal number of classes/clusters |
optimal_nfld |
Optimal number of fields |
optimal_result |
Analysis result using optimal parameters |
For LCA/LRA:
index_vec |
Vector of fit indices for each ncls |
optimal_ncls |
Optimal number of classes/clusters |
optimal_result |
Analysis result using optimal parameters |
## Not run:
# Grid search for Biclustering
result <- grid_serch(data_matrix, max_ncls = 5, max_nfld = 5)
# Grid search for LCA
result <- grid_serch(data_matrix, max_ncls = 8, fun = "LCA")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.