Nothing
logNormal_expert <- "// log-Normal survival model
functions {
// Defines the log survival
vector log_S (vector t, vector mean, real sd) {
vector[num_elements(t)] log_S_rtn;
for (i in 1:num_elements(t)) {
log_S_rtn[i] = log(1-Phi((log(t[i])-mean[i])/sd));
}
return log_S_rtn;
}
// Defines the log survival indvidual
real log_Sind (real t, real mean, real sd) {
real log_Sind_rtn;
log_Sind_rtn = log(1-Phi((log(t)-mean)/sd));
return log_Sind_rtn;
}
// Defines difference in expected survival
real Surv_diff (real mean_trt, real mean_comp, real sd ) {
real Surv_diff_rtn;
real Surv_trt;
real Surv_comp;
Surv_trt = exp(mean_trt + 0.5 * pow(sd,2));
Surv_comp = exp(mean_comp + 0.5 * pow(sd,2));
Surv_diff_rtn = Surv_trt - Surv_comp;
return Surv_diff_rtn;
}
// Defines the log hazard
vector log_h (vector t, vector mean, real sd) {
vector[num_elements(t)] log_h_rtn;
vector[num_elements(t)] ls;
ls = log_S(t,mean,sd);
for (i in 1:num_elements(t)) {
log_h_rtn[i] = lognormal_lpdf(t[i]|mean[i],sd) - ls[i];
}
return log_h_rtn;
}
// Defines the sampling distribution
real surv_lognormal_lpdf (vector t, vector d, vector mean, real sd, vector a0) {
vector[num_elements(t)] log_lik;
real prob;
log_lik = d .* log_h(t,mean,sd) + log_S(t,mean,sd);
prob = dot_product(log_lik, a0);
return prob;
}
// Defines the numerical derivative
real derivative(real x, real mean, real sd, int param) {
real f_plus;
real f_minus;
real epsilon;
epsilon = 0.001;
if(param==1){
f_plus = exp(log_Sind(x, mean+ epsilon, sd));
f_minus = exp(log_Sind(x , mean- epsilon, sd));
}else{
f_plus = exp(log_Sind(x, mean, sd + epsilon));
f_minus = exp(log_Sind(x , mean, sd- epsilon));
}
return abs((f_plus - f_minus) / (2 * epsilon));
}
real log_density_dist(array[ , ] real params,
real x,int num_expert, int pool_type){
// Evaluates the log density for a range of distributions
array[num_expert] real dens;
for(i in 1:num_expert){
if(params[i,1] == 1){
if(pool_type == 1){
dens[i] = exp(normal_lpdf(x|params[i,3], params[i,4]))*params[i,2]; /// Only require the log density is correct to a constant of proportionality
}else{
dens[i] = exp(normal_lpdf(x|params[i,3], params[i,4]))^params[i,2]; /// Only require the log density is correct to a constant of proportionality
}
}else if(params[i,1] == 2){
if(pool_type == 1){
dens[i] = exp(student_t_lpdf(x|params[i,5],params[i,3], params[i,4]))*params[i,2];
}else{
dens[i] = exp(student_t_lpdf(x|params[i,5],params[i,3], params[i,4]))^params[i,2];
}
}else if(params[i,1] == 3){
if(pool_type == 1){
dens[i] = exp(gamma_lpdf(x|params[i,3], params[i,4]))*params[i,2];
}else{
dens[i] = exp(gamma_lpdf(x|params[i,3], params[i,4]))^params[i,2];
}
}else if(params[i,1] == 4){
if(pool_type == 1){
dens[i] = exp(lognormal_lpdf(x|params[i,3], params[i,4]))*params[i,2];
}else{
dens[i] = exp(lognormal_lpdf(x|params[i,3], params[i,4]))^params[i,2];
}
}else if(params[i,1] == 5){
if(pool_type == 1){
dens[i] = exp(beta_lpdf(x|params[i,3], params[i,4]))*params[i,2];
}else{
dens[i] = exp(beta_lpdf(x|params[i,3], params[i,4]))^params[i,2];
}
}
}
if(pool_type == 1){
return(log(sum(dens)));
}else{
return(log(prod(dens)));
}
}
}
data {
int n; // number of observations
vector[n] t; // observed times
vector[n] d; // censoring indicator (1=observed, 0=censored)
int H; // number of covariates
matrix[n,H] X; // matrix of covariates (with n rows and H columns)
vector[H] mu_beta; // mean of the covariates coefficients
vector<lower=0> [H] sigma_beta; // sd of the covariates coefficients
real a_alpha; // lower bound for the sd of the data
real b_alpha; // upper bound for the sd of the data
vector[n] a0; //Power prior for the observations
int<lower = 0, upper = 1> St_indic; // 1 Expert opinion on survival @ timepoint ; 0 Expert opinion on survival difference
int n_time_expert;
int id_St;
int id_trt;
int id_comp;
array[n_time_expert] int n_experts;
int pool_type;
array[max(n_experts),5,n_time_expert] real param_expert;
vector[St_indic ? n_time_expert : 0] time_expert;
int expert_only;
}
parameters {
vector[H] beta; // Coefficients in the linear predictor (including intercept)
real<lower=0> alpha; // log-sd parameter
}
transformed parameters {
vector[n] linpred;
vector[n] mu;
vector[n_time_expert] St_expert;
linpred = X*beta;
for (i in 1:n) {
mu[i] = linpred[i];
}
for (i in 1:n_time_expert){
if(St_indic == 1){
St_expert[i] = exp(log_Sind(time_expert[i],mu[id_St],alpha));
}else{
St_expert[i] = Surv_diff(mu[id_trt],mu[id_comp], alpha);
}
}
}
model {
alpha ~ uniform(a_alpha,b_alpha);
beta ~ normal(mu_beta,sigma_beta);
if(expert_only == 0){
t ~ surv_lognormal(d,X*beta,alpha, a0);
}
for (i in 1:n_time_expert){
target += log_density_dist(param_expert[,,i],
St_expert[i],
n_experts[i],
pool_type);
}
//if(St_indic == 1){
//target += log(derivative(St_expert[1],mu[id_St],alpha,1)+ derivative(St_expert[1],mu[id_St],alpha,2));
//}
}
generated quantities {
real meanlog;
meanlog = beta[1];
}
"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.