R/logNormal_expert.R

logNormal_expert <- "// log-Normal survival model

functions {
  // Defines the log survival
  vector log_S (vector t, vector mean, real sd) {
    vector[num_elements(t)] log_S_rtn;
    for (i in 1:num_elements(t)) {
      log_S_rtn[i] = log(1-Phi((log(t[i])-mean[i])/sd));
    }
    return log_S_rtn;
  }

  // Defines the log survival indvidual
  real log_Sind (real t, real mean, real sd) {
    real log_Sind_rtn;
    log_Sind_rtn = log(1-Phi((log(t)-mean)/sd));
    return log_Sind_rtn;
  }

  // Defines difference in expected survival
  real Surv_diff (real mean_trt, real mean_comp, real sd ) {
    real Surv_diff_rtn;
    real Surv_trt;
    real Surv_comp;

    Surv_trt = exp(mean_trt + 0.5 * pow(sd,2));
    Surv_comp = exp(mean_comp + 0.5 * pow(sd,2));

    Surv_diff_rtn = Surv_trt - Surv_comp;
    return Surv_diff_rtn;
  }


  // Defines the log hazard
  vector log_h (vector t, vector mean, real sd) {
    vector[num_elements(t)] log_h_rtn;
    vector[num_elements(t)] ls;
    ls = log_S(t,mean,sd);
    for (i in 1:num_elements(t)) {
      log_h_rtn[i] = lognormal_lpdf(t[i]|mean[i],sd) - ls[i];
    }
    return log_h_rtn;
  }

  // Defines the sampling distribution
  real surv_lognormal_lpdf (vector t, vector d, vector mean, real sd, vector a0) {
    vector[num_elements(t)] log_lik;
    real prob;
    log_lik = d .* log_h(t,mean,sd) + log_S(t,mean,sd);
    prob = dot_product(log_lik, a0);
    return prob;
  }
// Defines the numerical derivative
  real derivative(real x,  real mean, real sd, int param) {
    real f_plus;
    real f_minus;
    real epsilon;
	
	epsilon = 0.001;
	
    if(param==1){
    f_plus = exp(log_Sind(x, mean+ epsilon, sd));
    f_minus = exp(log_Sind(x , mean- epsilon, sd));
    }else{
        f_plus = exp(log_Sind(x, mean, sd + epsilon));
        f_minus = exp(log_Sind(x , mean, sd- epsilon));
    }
    
    return abs((f_plus - f_minus) / (2 * epsilon));
  }




  real log_density_dist(array[ , ] real params,
                        real x,int num_expert, int pool_type){

    // Evaluates the log density for a range of distributions

    array[num_expert] real dens;

    for(i in 1:num_expert){
    if(params[i,1] == 1){
      if(pool_type == 1){
        dens[i] = exp(normal_lpdf(x|params[i,3], params[i,4]))*params[i,2]; /// Only require the log density is correct to a constant of proportionality
      }else{
        dens[i] = exp(normal_lpdf(x|params[i,3], params[i,4]))^params[i,2]; /// Only require the log density is correct to a constant of proportionality
      }

    }else if(params[i,1] == 2){
       if(pool_type == 1){
          dens[i] = exp(student_t_lpdf(x|params[i,5],params[i,3], params[i,4]))*params[i,2];
        }else{
          dens[i] = exp(student_t_lpdf(x|params[i,5],params[i,3], params[i,4]))^params[i,2];
       }

    }else if(params[i,1] == 3){
        if(pool_type == 1){
            dens[i] = exp(gamma_lpdf(x|params[i,3], params[i,4]))*params[i,2];
        }else{
            dens[i] = exp(gamma_lpdf(x|params[i,3], params[i,4]))^params[i,2];
        }

    }else if(params[i,1] == 4){

        if(pool_type == 1){
            dens[i] = exp(lognormal_lpdf(x|params[i,3], params[i,4]))*params[i,2];
        }else{
             dens[i] = exp(lognormal_lpdf(x|params[i,3], params[i,4]))^params[i,2];
        }

    }else if(params[i,1] == 5){
     if(pool_type == 1){
            dens[i] = exp(beta_lpdf(x|params[i,3], params[i,4]))*params[i,2];
        }else{
            dens[i] = exp(beta_lpdf(x|params[i,3], params[i,4]))^params[i,2];
        }


      }

    }



      if(pool_type == 1){
      return(log(sum(dens)));
      }else{
      return(log(prod(dens)));
      }

  }



}

data {
  int n;                  // number of observations
  vector[n] t;            // observed times
  vector[n] d;            // censoring indicator (1=observed, 0=censored)
  int H;                  // number of covariates
  matrix[n,H] X;          // matrix of covariates (with n rows and H columns)
  vector[H] mu_beta;	    // mean of the covariates coefficients
  vector<lower=0> [H] sigma_beta;   // sd of the covariates coefficients
  real a_alpha;			      // lower bound for the sd of the data
  real b_alpha;			      // upper bound for the sd of the data

  vector[n] a0; //Power prior for the observations
  int<lower = 0, upper = 1> St_indic; // 1 Expert opinion on survival @ timepoint ; 0 Expert opinion on survival difference
  int n_time_expert;

  int id_St;
  int id_trt;
  int id_comp;

  array[n_time_expert] int n_experts;
  int pool_type;

  array[max(n_experts),5,n_time_expert] real param_expert;
  vector[St_indic ? n_time_expert : 0] time_expert;
  int expert_only;
}

parameters {
  vector[H] beta;         // Coefficients in the linear predictor (including intercept)
  real<lower=0> alpha;    // log-sd parameter
}

transformed parameters {
  vector[n] linpred;
  vector[n] mu;
  vector[n_time_expert] St_expert;

  linpred = X*beta;
  for (i in 1:n) {
    mu[i] = linpred[i];
  }

  for (i in 1:n_time_expert){
    if(St_indic == 1){

      St_expert[i] = exp(log_Sind(time_expert[i],mu[id_St],alpha));

    }else{
      St_expert[i] = Surv_diff(mu[id_trt],mu[id_comp], alpha);
    }
  }

}

model {
  alpha ~ uniform(a_alpha,b_alpha);
  beta ~ normal(mu_beta,sigma_beta);
  if(expert_only == 0){
  t ~ surv_lognormal(d,X*beta,alpha, a0);
  }
    for (i in 1:n_time_expert){


     target += log_density_dist(param_expert[,,i],
                                 St_expert[i],
                                 n_experts[i],
                                 pool_type);

	}
      //if(St_indic == 1){
		//target += log(derivative(St_expert[1],mu[id_St],alpha,1)+ derivative(St_expert[1],mu[id_St],alpha,2));
	  //}




}

generated quantities {
  real meanlog;
  meanlog = beta[1];
}
"

Try the expertsurv package in your browser

Any scripts or data that you put into this service are public.

expertsurv documentation built on April 3, 2025, 10:37 p.m.