View source: R/confidence_interval.R
confidence_interval | R Documentation |
Compute confidence intervals for the data based on some changes. The current version is tuned to mean changes.
confidence_interval(
X,
changes,
K = bartlett_kernel,
h = 2 * ncol(X)^(1/5),
weighting = 0.5,
M = 5000,
alpha = 0.1,
method = "distribution"
)
X |
A dfts object or data which can be automatically converted to that
format. See |
changes |
Numeric vector for detected change points. |
K |
Function for the Kernel. Default is bartlett_kernel. |
h |
Numeric for bandwidth in computation of long run variance. The default
is |
weighting |
Weighting for the interval computation, value in [0,1]. Default is 0.5. |
M |
Numeric for the number of Brownian motion simulations in computation of the confidence interval. Default is 1000. |
alpha |
Numeric for the significance level, in [0,1]. Default is 0.1. |
method |
String to indicate the method for computing the percentiles used in the confidence intervals. The options are 'distribution' and 'simulation'. Default is 'distribution'. |
Data.frame with the first column for the changes, second for the lower bounds of confidence intervals, and the third for the upper bounds of confidence intervals.
Horvath, L., & Rice, G. (2024). Change Point Analysis for Time Series (First edition.). Springer.
Aue, A., Rice, G., & Sonmez, O. (2018). Detecting and dating structural breaks in functional data without dimension reduction. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 80(3), 509-529.
X <- cbind(
generate_brownian_motion(100, v = seq(0, 1, 0.05))$data,
generate_brownian_motion(100, v = seq(0, 1, 0.05))$data + 0.5
)
confidence_interval(X, 100, alpha = 0.1)
confidence_interval(X, changes = 100, alpha = 0.1, method = "simulation")
X <- generate_brownian_motion(200, v = seq(0, 1, 0.05))
confidence_interval(X, 100)
confidence_interval(X, 100, method = "simulation")
X <- cbind(
generate_brownian_motion(200, v = seq(0, 1, 0.05))$data,
generate_brownian_motion(100, v = seq(0, 1, 0.05))$data + 0.1,
generate_brownian_motion(150, v = seq(0, 1, 0.05))$data - 0.05
)
confidence_interval(X, c(200, 300))
confidence_interval(X = electricity, changes = c(64, 120), alpha = 0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.