Description Usage Arguments Details Value Examples
This function tests and detects changes in the specific eigenvalue of the covariance operator.
1 2 | eval_component(fdobj, component, h = 2, mean_change = FALSE,
delta = 0.1, M = 1000)
|
fdobj |
A functional data object of class ' |
component |
The eigenvalue that the componentwise test is applied to. |
h |
The window parameter for the estimation of the long run covariance matrix. The default
value is |
mean_change |
If |
delta |
Trimming parameter to estimate the covariance function using partial sum estimates. |
M |
Number of monte carlo simulations used to get the critical values. The default value is |
This function dates and detects changes in the defined eigenvalue of the covariance function. The critical values are
approximated via M
Monte Carlo simulations.
|
Approximate p value for testing whether there is a significant change in the desired eigenvalue of the covariance operator |
|
Estimated change location |
1 2 3 | # generate functional data
fdata = fun_IID(n=100, nbasis=21)
eval_component(fdata, 2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.