| EllipticalDependency | R Documentation |
A collection and description of functions to investigate
bivariate elliptical copulae.
Elliptical Copulae Functions:
ellipticalTau | Computes Kendall's tau for elliptical copulae, |
ellipticalRho | computes Spearman's rho for elliptical copulae, |
ellipticalTailCoeff | computes tail dependence for elliptical copulae, |
ellipticalTailPlot | plots tail dependence for elliptical copulae. |
ellipticalTau(rho)
ellipticalRho(rho, param = NULL, type = ellipticalList(), subdivisions = 500)
ellipticalTailCoeff(rho, param = NULL, type = c("norm", "cauchy", "t"))
ellipticalTailPlot(param = NULL, type = c("norm", "cauchy", "t"),
tail = c("Lower", "Upper"))
rho |
[*ellipticalCopula] - |
param |
[*ellipticalCopula][gfunc] - |
subdivisions |
[ellipticalRho] - |
tail |
[ellipticalTailPlot] - |
type |
[*ellipticalCopula][gfunc] - |
Copula Functions:
The functions [rpd]ellipticalCopula return a numeric vector
of random variates, probabilities, or densities for the specified
copula computed at grid coordinates u|v.
The functions [rpd]ellipticalSlider display an interactive
graph of an perspective copula plot either for random variates,
probabilities or densities. Alternatively, an image underlayed
contour plot can be shown.
Copula Dependence Measures:
The functions ellipticalTau and ellipticalRho return
a numericc value for Kendall's Tau and Spearman's Rho.
Copula Tail Coefficient:
The function ellipticalTailCoeff returns the coefficient of
tail dependence for a specified copula. The function
ellipticalTailPlot displays a whole plot for the upper or
alternatively for the lower tail dependence as a function of
u for a set of nine rho values.
Copula Generator Function:
The function gfunc computes the generator function for the
specified copula, by default the normal copula. If the argument
x is missing, then the normalization constand lambda will
be returned, otherwise if x is specified the values for the
function g(x) will be freturned. The selected type of copula
is added to the output as an attribute named "control".
The function gfuncSlider allows to display interactively
the generator function, the marginal density, the marginal
probability, and the contours of the the bivariate density.
Copula Simulation and Parameter Fitting:
The function ellipticalCopulaSim returns a numeric two-column
matrix with randomly generated variates for the specified copula.
The function ellipticalCopulaFit returns a fit to empirical
data for the specified copula. The returned object is a list with
elements from the function nlminb.
Diethelm Wuertz for the Rmetrics R-port.
## [rp]ellipticalCopula -
# Default Normal Copula:
rellipticalCopula(10)
pellipticalCopula(10)
## [rp]ellipticalCopula -
# Student-t Copula Probability and Density:
u = grid2d(x = (0:25)/25)
pellipticalCopula(u, rho = 0.75, param = 4,
type = "t", output = "list")
d <- dellipticalCopula(u, rho = 0.75, param = 4,
type = "t", output = "list")
persp(d, theta = -40, phi = 30, col = "steelblue")
## ellipticalTau -
## ellipticalRho -
# Dependence Measures:
ellipticalTau(rho = -0.5)
ellipticalRho(rho = 0.75, type = "logistic", subdivisions = 100)
## ellipticalTailCoeff -
# Student-t Tail Coefficient:
ellipticalTailCoeff(rho = 0.25, param = 3, type = "t")
## gfunc -
# Generator Function:
plot(gfunc(x = 0:10), main = "Generator Function")
## ellipticalCopulaSim -
## ellipticalCopulaSim -
# Simualtion and Parameter Fitting:
rv <- ellipticalCopulaSim(n = 100, rho = 0.75)
ellipticalCopulaFit(rv)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.