EllipticalDependency | R Documentation |
A collection and description of functions to investigate
bivariate elliptical copulae.
Elliptical Copulae Functions:
ellipticalTau | Computes Kendall's tau for elliptical copulae, |
ellipticalRho | computes Spearman's rho for elliptical copulae, |
ellipticalTailCoeff | computes tail dependence for elliptical copulae, |
ellipticalTailPlot | plots tail dependence for elliptical copulae. |
ellipticalTau(rho) ellipticalRho(rho, param = NULL, type = ellipticalList(), subdivisions = 500) ellipticalTailCoeff(rho, param = NULL, type = c("norm", "cauchy", "t")) ellipticalTailPlot(param = NULL, type = c("norm", "cauchy", "t"), tail = c("Lower", "Upper"))
rho |
[*ellipticalCopula] - |
param |
[*ellipticalCopula][gfunc] - |
subdivisions |
[ellipticalRho] - |
tail |
[ellipticalTailPlot] - |
type |
[*ellipticalCopula][gfunc] - |
Copula Functions:
The functions [rpd]ellipticalCopula
return a numeric vector
of random variates, probabilities, or densities for the specified
copula computed at grid coordinates u
|v
.
The functions [rpd]ellipticalSlider
display an interactive
graph of an perspective copula plot either for random variates,
probabilities or densities. Alternatively, an image underlayed
contour plot can be shown.
Copula Dependence Measures:
The functions ellipticalTau
and ellipticalRho
return
a numericc value for Kendall's Tau and Spearman's Rho.
Copula Tail Coefficient:
The function ellipticalTailCoeff
returns the coefficient of
tail dependence for a specified copula. The function
ellipticalTailPlot
displays a whole plot for the upper or
alternatively for the lower tail dependence as a function of
u
for a set of nine rho
values.
Copula Generator Function:
The function gfunc
computes the generator function for the
specified copula, by default the normal copula. If the argument
x
is missing, then the normalization constand lambda will
be returned, otherwise if x
is specified the values for the
function g(x) will be freturned. The selected type of copula
is added to the output as an attribute named "control"
.
The function gfuncSlider
allows to display interactively
the generator function, the marginal density, the marginal
probability, and the contours of the the bivariate density.
Copula Simulation and Parameter Fitting:
The function ellipticalCopulaSim
returns a numeric two-column
matrix with randomly generated variates for the specified copula.
The function ellipticalCopulaFit
returns a fit to empirical
data for the specified copula. The returned object is a list with
elements from the function nlminb
.
Diethelm Wuertz for the Rmetrics R-port.
## [rp]ellipticalCopula - # Default Normal Copula: rellipticalCopula(10) pellipticalCopula(10) ## [rp]ellipticalCopula - # Student-t Copula Probability and Density: u = grid2d(x = (0:25)/25) pellipticalCopula(u, rho = 0.75, param = 4, type = "t", output = "list") d <- dellipticalCopula(u, rho = 0.75, param = 4, type = "t", output = "list") persp(d, theta = -40, phi = 30, col = "steelblue") ## ellipticalTau - ## ellipticalRho - # Dependence Measures: ellipticalTau(rho = -0.5) ellipticalRho(rho = 0.75, type = "logistic", subdivisions = 100) ## ellipticalTailCoeff - # Student-t Tail Coefficient: ellipticalTailCoeff(rho = 0.25, param = 3, type = "t") ## gfunc - # Generator Function: plot(gfunc(x = 0:10), main = "Generator Function") ## ellipticalCopulaSim - ## ellipticalCopulaSim - # Simualtion and Parameter Fitting: rv <- ellipticalCopulaSim(n = 100, rho = 0.75) ellipticalCopulaFit(rv)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.