This document collects call patterns and options for each public function. All formulas follow response ~ A + B (+ C ...) with numeric response and factor predictors.
srh.kway.full()
Purpose: one-call pipeline: ANOVA on ranks + descriptives + post hocs + simple effects. Syntax: srh.kway.full(y ~ A + B (+ C ...), data, max_levels = 30)
3+ factors: srh.kway()
Returns a list: anova, summary, posthoc_cells, posthoc_simple, meta.
Placeholders:
Example:
res <- srh.kway.full(liking ~ gender + condition + age_cat, data = mimicry)
names(res)
res$anova[1:3]
head(res$summary)
names(res$posthoc_cells)
names(res$posthoc_simple)[1:3]
res$meta
Notes:
write.srh.kway.full.tsv()
Purpose: export the srh.kway.full() result into a single TSV file for fast formatting. Syntax: write.srh.kway.full.tsv(obj, file = "srh_kway_full.tsv", sep = "\t", na = "", dec = ".")
Example:
f <- tempfile(fileext = ".tsv")
write.srh.kway.full.tsv(res, file = f, dec = ",")
file.exists(f)
srh.kway()
Purpose: general k-way SRH-style ANOVA on ranks (Type II SS), tie-corrected p-values. Syntax: srh.kway(y ~ A + B (+ C ...), data, clamp0 = TRUE, force_factors = TRUE, ...)
Example:
k3 <- srh.kway(liking ~ gender + condition + age_cat, data = mimicry)
k3
One-factor check (KW-like):
k1 <- srh.kway(liking ~ condition, data = mimicry)
k1
srh.effsize()
Purpose: 2-way SRH table with effect sizes from H. Syntax: srh.effsize(y ~ A + B, data, clamp0 = TRUE, ...)
Example:
e2 <- srh.effsize(liking ~ gender + condition, data = mimicry)
e2
nonpar.datatable()
Purpose: compact descriptive tables (APA-style), with global rank means, medians, quartiles, IQR. Syntax: nonpar.datatable(y ~ A + B (+ C ...), data, force_factors = TRUE)
Example:
dt <- nonpar.datatable(liking ~ gender + condition, data = mimicry)
head(dt)
srh.posthoc()
Purpose: Dunn–Bonferroni pairwise comparison matrix for a specified effect. Syntax: srh.posthoc(y ~ A (+ B + ...), data, method = "bonferroni", digits = 3, triangular = c("lower","upper","full"), numeric = FALSE, force_factors = TRUE, sep = ".")
Example:
ph <- srh.posthoc(liking ~ condition, data = mimicry)
srh.posthocs()
Purpose: Dunn–Bonferroni pairwise matrices for all effects (main and interactions). Syntax: srh.posthocs(y ~ A + B (+ C ...), data, ...)
Example:
phs <- srh.posthocs(liking ~ gender + condition + age_cat, data = mimicry)
names(phs)
phs[["gender:condition"]][1:5, 1:5]
srh.simple.posthoc()
Purpose: Simple-effects post hocs (pairwise comparisons within levels of conditioning factors). Syntax: srh.simple.posthoc(y ~ A + B (+ C ...), data, compare = NULL, scope = c("within","global"), digits = 3)
Example:
simp <- srh.simple.posthoc(liking ~ gender + condition + age_cat, data = mimicry, compare = "gender", scope = "within")
head(simp)
srh.simple.posthocs()
Purpose: enumerate all simple-effect configurations for a given design. Syntax: srh.simple.posthocs(y ~ A + B (+ C ...), data)
Example:
sps <- srh.simple.posthocs(liking ~ gender + condition + age_cat, data = mimicry)
head(names(sps), 6)
Formula tips and pitfalls
Example:
#coercing
mimicry$gender <- factor(mimicry$gender)
mimicry$condition <- factor(mimicry$condition)
Performance and reproducibility
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.