Nothing
{
"type": "double",
"attributes": {},
"value": [-0.0405844]
}
{
"type": "double",
"attributes": {},
"value": [0.00487013]
}
Code
print(ran)
Output
Call:
fairadaptBoot(formula = y ~ ., prot.attr = "a", adj.mat = adj.mat,
train.data = train, test.data = test, keep.object = TRUE,
n.boot = 3L, seed = 202)
Bootstrap repetitions: 3
Adapting variables:
y, x
Based on protected attribute a
AND
Based on causal graph:
a y x
a 0 0 1
y 0 0 0
x 0 1 0
Code
summary(ran)
Output
Call:
fairadaptBoot(formula = y ~ ., prot.attr = "a", adj.mat = adj.mat,
train.data = train, test.data = test, keep.object = TRUE,
n.boot = 3L, seed = 202)
Bootstrap repetitions: 3
Protected attribute: a
Protected attribute levels: 0, 1
Adapted variables: y, x
Number of training samples: 100
Number of test samples: 0
Quantile method: quant.method
Randomness considered: finsamp
fairadapt objects saved: TRUE
Code
print(rto)
Output
Call:
fairadaptBoot(formula = y ~ ., prot.attr = "a", train.data = train,
test.data = test, top.ord = c("a", "x", "y"), n.boot = 3L,
seed = 202)
Bootstrap repetitions: 3
Adapting variables:
x, y
Based on protected attribute a
AND
Based on topological order:
axy
Code
summary(rto)
Output
Call:
fairadaptBoot(formula = y ~ ., prot.attr = "a", train.data = train,
test.data = test, top.ord = c("a", "x", "y"), n.boot = 3L,
seed = 202)
Bootstrap repetitions: 3
Protected attribute: a
Protected attribute levels: 0, 1
Number of training samples: 100
Number of test samples: 0
Quantile method: quant.method
Randomness considered: finsamp
fairadapt objects saved: FALSE
Code
print(charmod)
Output
Call:
fairadaptBoot(formula = score ~ ., prot.attr = "gender", adj.mat = adj.mat,
train.data = uni, keep.object = TRUE, n.boot = 3L, seed = 203)
Bootstrap repetitions: 3
Adapting variables:
edu, test, score
Based on protected attribute gender
AND
Based on causal graph:
gender edu test score
gender 0 1 1 1
edu 0 0 0 1
test 0 0 0 1
score 0 0 0 0
Code
summary(charmod)
Output
Call:
fairadaptBoot(formula = score ~ ., prot.attr = "gender", adj.mat = adj.mat,
train.data = uni, keep.object = TRUE, n.boot = 3L, seed = 203)
Bootstrap repetitions: 3
Protected attribute: gender
Protected attribute levels: 0, 1
Adapted variables: edu, test, score
Number of training samples: 1000
Number of test samples: 0
Quantile method: quant.method
Randomness considered: finsamp
fairadapt objects saved: TRUE
Code
print(mod)
Output
Call:
fairadaptBoot(formula = two_year_recid ~ ., prot.attr = "race",
adj.mat = adj.mat, train.data = train, test.data = test,
n.boot = 3, seed = 203)
Bootstrap repetitions: 3
Adapting variables:
juv_fel_count, juv_misd_count, juv_other_count, priors_count, c_charge_degree, two_year_recid
Based on protected attribute race
AND
Based on causal graph:
age sex juv_fel_count juv_misd_count juv_other_count priors_count c_charge_degree race two_year_recid
age 0 0 1 1 1 1 1 0 1
sex 0 0 1 1 1 1 1 0 1
juv_fel_count 0 0 0 0 0 1 1 0 1
juv_misd_count 0 0 0 0 0 1 1 0 1
juv_other_count 0 0 0 0 0 1 1 0 1
priors_count 0 0 0 0 0 0 1 0 1
c_charge_degree 0 0 0 0 0 0 0 0 1
race 0 0 1 1 1 1 1 0 1
two_year_recid 0 0 0 0 0 0 0 0 0
Code
summary(mod)
Output
Call:
fairadaptBoot(formula = two_year_recid ~ ., prot.attr = "race",
adj.mat = adj.mat, train.data = train, test.data = test,
n.boot = 3, seed = 203)
Bootstrap repetitions: 3
Protected attribute: race
Protected attribute levels: Non-White, White
Adapted variables: juv_fel_count, juv_misd_count, juv_other_count, priors_count, c_charge_degree, two_year_recid
Number of training samples: 1000
Number of test samples: 0
Quantile method: quant.method
Randomness considered: finsamp
fairadapt objects saved: FALSE
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.