This vignette demonstrates a benchmark comparing the readMM
function from the
Matrix
package against the read_fmm
function from the fastMatMR
package.
Since Matrix
does not support reading or writing dense matrices, we focus on
the sparse case.
First, we load the necessary packages:
library(Matrix) library(fastMatMR) library(microbenchmark) library(ggplot2)
We first benchmark for varying matrix sizes with fixed sparsity.
# Function to create a sparse matrix of given size create_sparse_matrix <- function(n, sparsity = 0.7) { mat <- matrix(0, nrow = n, ncol = n) for (i in 1:n) { for (j in 1:n) { if (runif(1) > sparsity) { mat[i, j] <- rnorm(1) } } } return(Matrix(mat, sparse = TRUE)) } # Define a range of matrix sizes sizes <- c(10, 100, 500, 1000, 2000, 3000) # Prepare data frame to store results results_fixed_sparsity <- data.frame() # Benchmarking for (n in sizes) { message("Benchmarking for matrix size: ", n, "x", n) # Generate a sparse matrix of size n x n testmat <- create_sparse_matrix(n) write_fmm(testmat, "sparse.mtx") # Run the benchmarks, we coerce to a sparse matrix for readMM for fairness bm <- microbenchmark( Matrix_readMM = as(readMM("sparse.mtx"), "CsparseMatrix"), fastMatMR_read_fmm = fmm_to_sparse_Matrix("sparse.mtx"), times = 10 ) bm$size <- n results_fixed_sparsity <- rbind(results_fixed_sparsity, bm) } #> Benchmarking for matrix size: 10x10 #> Benchmarking for matrix size: 100x100 #> Benchmarking for matrix size: 500x500 #> Benchmarking for matrix size: 1000x1000 #> Benchmarking for matrix size: 2000x2000 #> Benchmarking for matrix size: 3000x3000
This is shown visually represented below:
# Plotting suppressWarnings(print( ggplot(results_fixed_sparsity, aes(x = size, y = time, color = expr)) + geom_point() + geom_smooth(method = "loess") + ggtitle("Benchmarking reads with fixed sparsity for 70% sparsity") + xlab("Matrix Size") + ylab("Time (ns)") )) #> `geom_smooth()` using formula = 'y ~ x'
plot of chunk fixed-sparse-read
Now, we benchmark for varying sparsity patterns on a large matrix.
# Sparsity levels to test sparsity_levels <- seq(0.45, 0.95, by = 0.1) # Prepare data frame to store results results_varying_sparsity <- data.frame() # Benchmarking for (sparsity in sparsity_levels) { message("Benchmarking for sparsity level: ", sparsity) # Generate a sparse matrix of size 2000 x 2000 with varying sparsity testmat <- create_sparse_matrix(2000, sparsity) write_fmm(testmat, "sparse.mtx") # Run the benchmarks bm <- microbenchmark( Matrix_readMM = as(readMM("sparse.mtx"), "CsparseMatrix"), fastMatMR_read_fmm = fmm_to_sparse_Matrix("sparse.mtx"), times = 10 ) bm$sparsity <- sparsity results_varying_sparsity <- rbind(results_varying_sparsity, bm) } #> Benchmarking for sparsity level: 0.45 #> Benchmarking for sparsity level: 0.55 #> Benchmarking for sparsity level: 0.65 #> Benchmarking for sparsity level: 0.75 #> Benchmarking for sparsity level: 0.85 #> Benchmarking for sparsity level: 0.95
Now we can plot this:
ggplot(results_varying_sparsity, aes(x = sparsity, y = time, color = expr)) + geom_point() + geom_smooth(method = "loess") + scale_x_log10() + scale_y_log10() + ggtitle("Benchmarking reads with varying sparsity for 2000 entries") + xlab("Sparsity Level (log10)") + ylab("Time (ns, log10)") #> `geom_smooth()` using formula = 'y ~ x'
plot of chunk varying-sparse-read
We see that though there are no statistically significant differences in speed
for small matrices, the fastMatMR
package is significantly faster for large
matrices. This is because the readMM
function from the Matrix
reads data
into a triplet form, which gets slower for larger matrices.
This vignette was computed in advance, with the corresponding session info:
sessionInfo() #> R version 4.3.1 (2023-06-16) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Arch Linux #> #> Matrix products: default #> BLAS: /usr/lib/libblas.so.3.11.0 #> LAPACK: /usr/lib/liblapack.so.3.11.0 #> #> locale: #> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C #> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 #> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 #> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C #> [9] LC_ADDRESS=C LC_TELEPHONE=C #> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C #> #> time zone: Iceland #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] ggplot2_3.4.4 microbenchmark_1.4.10 Matrix_1.5-4.1 #> [4] fastMatMR_1.2.5 testthat_3.1.10 #> #> loaded via a namespace (and not attached): #> [1] gtable_0.3.4 xfun_0.40 htmlwidgets_1.6.2 devtools_2.4.5 #> [5] remotes_2.4.2.1 processx_3.8.2 lattice_0.21-8 callr_3.7.3 #> [9] generics_0.1.3 vctrs_0.6.3 tools_4.3.1 ps_1.7.5 #> [13] parallel_4.3.1 tibble_3.2.1 fansi_1.0.4 highr_0.10 #> [17] pkgconfig_2.0.3 desc_1.4.2 lifecycle_1.0.3 farver_2.1.1 #> [21] compiler_4.3.1 stringr_1.5.0 brio_1.1.3 munsell_0.5.0 #> [25] decor_1.0.2 httpuv_1.6.11 htmltools_0.5.6 usethis_2.2.2 #> [29] later_1.3.1 pillar_1.9.0 crayon_1.5.2 urlchecker_1.0.1 #> [33] ellipsis_0.3.2 cachem_1.0.8 sessioninfo_1.2.2 nlme_3.1-162 #> [37] mime_0.12 commonmark_1.9.0 tidyselect_1.2.0 digest_0.6.33 #> [41] stringi_1.7.12 dplyr_1.1.2 purrr_1.0.2 labeling_0.4.3 #> [45] splines_4.3.1 rprojroot_2.0.3 fastmap_1.1.1 grid_4.3.1 #> [49] colorspace_2.1-0 cli_3.6.1 magrittr_2.0.3 pkgbuild_1.4.2 #> [53] utf8_1.2.3 withr_2.5.0 prettyunits_1.1.1 scales_1.2.1 #> [57] promises_1.2.1 cpp11_0.4.6 roxygen2_7.2.3 memoise_2.0.1 #> [61] shiny_1.7.5 evaluate_0.21 knitr_1.43 miniUI_0.1.1.1 #> [65] mgcv_1.8-42 profvis_0.3.8 rlang_1.1.1 Rcpp_1.0.11 #> [69] xtable_1.8-4 glue_1.6.2 xml2_1.3.5 pkgload_1.3.2.1 #> [73] rstudioapi_0.15.0 R6_2.5.1 fs_1.6.3
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.