rm(list=ls()) ### To clear namespace library(knitr) opts_chunk$set(echo=TRUE, eval=FALSE)
This vignette is intended to show users how to fit functional concurrent regression models and then perform dynamic prediction using the fcr package. The analysis here mirrors the data application in Leroux et. al (2017).
The fcr package was created to fit functional concurrent models when the functional response and predictor are irregularly measured.
We note that regularly spaced functional concurrent regression models can be fit using this package, but if dynamic prediction is not
of interest and the data are regularly spaced,
the refund package likely provides substantial computational gains over the fcr package.
The fcr() function is a wrapper for mgcv::gam()/mgcv::bam() and face::face.sparse(). The mean model specification syntax of fcr() is that of mgcv::gam(). This function fits models of the form
$$ Y_ij = f_0(t_{ij}) + \beta_1X_{i} + f_2(t_{ij})Z_{ij} + f_3(Z_{ij}) + f_4(Z_{ij}, t_{ij}) + \cdots + b_i(t_{ij}) + \epsilon_{ij} $$ Where $b_i(t_{ij})$ is denotes a random function intercept and $\epsilon_{ij}$ are iid normally distributed noise. We assume the functional random intercept and white noise terms are independent. The fcr() function does not currently allow non-identity link functions for the response.
The fcr package contains simulated child growth data. Below, we present a model fitting procedure and show how to perform dynamic prediction, and plot the results.
In this data, we have two irregularly measured growth indicators, height for age (haz) and weight for age (waz), as well as a time-invariant covariate indicating the sex of the child (Male). We allow for time varying coefficients on both the gender covariate, and concurrently measured waz. More precisely, our model is
$$ \text{HAZ}{ij} = f_0(t{ij}) + f_1(t_{ij})\text{Male}i + f_2(t{ij})WAZ_{ij} + b_i(t_{ij}) + \epsilon_{ij} $$
In this data, both $HAZ$ and $WAZ$ are measured with noise, and so the first step is to smooth the noisy $WAZ$ covariate. Here, we smooth using functional principal component analysis via the face package.
library(fcr) ## split the data into training and test data data_full <- content data <- subset(data_full, include == 1) ## data used in model fitting data_test <- subset(data_full, include == 0) ## out-of-sample data used in dynamic prediction rm(list="data_full") k <- 12 # number of interior knots for fpca (results in k + 3 basis functions) ## Specify the functional domain where we want to make predictions. ## We need to add in the times of observation for the test data tnew <- sort(unique(c(data$argvals, data_test$argvals))) ########################################### ## Step 1: Smooth time-varying covariate ## ########################################### dat.waz <- data.frame("y" = data$waz, "subj" = data$subj, argvals = data$argvals) fit.waz <- face.sparse(dat.waz, newdata = dat.waz, knots = k, argvals.new = tnew) data$wazPred <- fit.waz$y.pred
Once we have the smooth functional covariate, we are ready to fit our model.
##################### ## Step 2: Fit fcr ## ##################### K <- 15 # dimenson of smooth for time varying coefficients ## The mean model in order of the formula presented below: ## E[Y_{ij}] = f_0(t_{ij}) + f_1(t_{ij})Male_i + f_2(t_{ij})\tilde{WAZ}_{ij} ## note that we do not specify any random effects. That is done internally by fcr() fit <- fcr(formula = Y ~ s(argvals, k=K, bs="ps") + s(argvals, by=Male, k=K, bs="ps") + s(argvals, by=wazPred, bs="ps"), argvals = "argvals", subj="subj", data=data, use_bam=TRUE, argvals.new=tnew, face.args = list(knots=k, pve=0.99))
Below we plot the data. The panels in the top row correspond to the estimated $f_0,f_1,f_2$. The bottom three panels correspond features of the estimate covariance function.
##################### ## Examine results ## ##################### ## plot coefficients par(mfrow=c(2,3),las=1) for(k in 1:3) plot(fit,select=k) # plot covariance function plot(fit, plot.covariance=TRUE)
Dynamic prediction in a functional concurrent model is complicated by the fact that we require a value for the functional covariate at the time where we wish to dynamically predict the outcome of interest.
The solution proposed in Leroux et. al (2017) is to use fpca to dynamically predict the covariate values, then use those predictions as our covariate in the functional concurrent model. As a result, for each new set of dynamic predictions, the functional covariate must be re-estimated.
Suppose we wise to make dynamic predictions for a subject for $t > t_m$ for some $t, t_m < t_{\text{max}}$ where $t_{\text{max}}$ is the maximum value of the functional domain used in model fitting. The procedure can for dynamic prediction can be summarized in the following steps
Note that step (4) above is required by the fcr() function to distinguish dynamic prediction from "in-sample" prediction. We provide an example of both in-sample and dynamic prediction in the code below.
The predict.fcr() function allows for both in-sample and dynamic prediction. For in-sample prediction, the estimated BLUPs from mgcv::bam()/mgcv::gam() are used. Only subjects included in model fitting can be used for in-sample prediction.
In contrast, dynamic prediction is performed on subjects not included in model fitting as indicated by the "subj" identifier. Note that dynamic predictions for subjects that were included in model fitting can be retrieved by assigning them a new subject id in the "newdata" argument to predict.fcr().
The difference between dynamic predictions and in-sample predictions manifests in two ways.
First, suppose we observe data on subject $i$ at times $1,2,\ldots,10$ and fit the model on this data. If we supply subject $i$'s data for times $1,2,3$ and NA values at times $4,\ldots,10$, in-sample prediction will provide the same predictions as if we had included all times $1,\ldots,10$ in the new data. In contrast, dynamic prediction for this subject will re-estimate this subjects' BLUPs using only the available data ($t=1,2,3$). Generally, these two predictions will not be equal.
Second, suppose we're in the scenario mentioned above, but we supply all the subjects' data to the predict function. The predicted values will be the same (up to a negligible difference that arises from the differing matrix algebra operations used), but the standard errors will differ. This is because the standard errors calculated for in-sample prediction take into account the estimated covariance of the random effects with fixed effects (see ?predict.gam for more details). Dynamic predictions, in contrast, assume independence between random effects and fixed effects.
We illustrate these differences in the code below.
## do in-sample and dynamic prediction for subject 1 data_pred <- subset(data, subj==1) ## make two separate dataframes for dynamic prediction ## and create make new subject id not used in model fitting data_pred_dyn <- data_pred_dyn2 <- data_pred data_pred_dyn$subj <- data_pred_dyn2$subj <- data_pred_dyn$subj + 10000 ## make "observed data" beyond t=0.5 NA data_pred_dyn$Y[data_pred_dyn$argvals >= 0.5] <- NA data_pred_dyn$waz[data_pred_dyn$argvals >= 0.5] <- NA ## calculate dynamic waz scores data_dyn_waz <- data.frame("y" = data_pred_dyn$waz, "subj" = data_pred_dyn$subj, "argvals" = data_pred_dyn$argvals) data_pred_dyn$wazPred <- predict(fit.waz, newdata=data_dyn_waz)$y.pred ## perform predictions in_samp <- predict(fit, newdata=data_pred, se.fit=TRUE) dyn <- predict(fit, newdata=data_pred_dyn) dyn2 <- predict(fit, newdata=data_pred_dyn2)
## plot the predictions ylims <- c(-1.5,0.75) tplot <- data_pred$argvals par(mfrow=c(1,1)) plot(tplot,in_samp$insample_predictions$fit,xlab="t",ylab="haz", type='l',xlim=c(0,1),ylim=ylims,main="Dynamic vs In-Sample Predictions") lines(tplot,lty=2, in_samp$insample_predictions$fit + 1.96*in_samp$insample_predictions$se.fit) lines(tplot,lty=2, in_samp$insample_predictions$fit - 1.96*in_samp$insample_predictions$se.fit) lines(tplot,lty=1,col='red', dyn$dynamic_prediction$fitted.values$y.pred) lines(tplot,lty=2,col='red', dyn$dynamic_prediction$fitted.values$y.pred + 1.96*dyn$dynamic_prediction$fitted.values$se.fit) lines(tplot,lty=2,col='red', dyn$dynamic_prediction$fitted.values$y.pred - 1.96*dyn$dynamic_prediction$fitted.values$se.fit) lines(tplot,lty=1,col='blue', dyn2$dynamic_prediction$fitted.values$y.pred) lines(tplot,lty=2,col='blue', dyn2$dynamic_prediction$fitted.values$y.pred + 1.96*dyn2$dynamic_prediction$fitted.values$se.fit) lines(tplot,lty=2,col='blue', dyn2$dynamic_prediction$fitted.values$y.pred - 1.96*dyn2$dynamic_prediction$fitted.values$se.fit) abline(v=0.5,lty=2,lwd=2,col='grey') legend("top",c("In-sample","Dynamic (all data)","Dynamic (up to t=0.5)","", "Predicted Curve","95% CI"), col=c("black","blue","red","black","black","black"), lty=c(1,1,1,NA,2,1),lwd=2,bty="n",ncol=2) axis(1,0.5,labels=expression(t[m]==0.5))
Below we show how to perform dynamic prediction for all subjects in the test dataset using data up to $t_m = 0.5$. We also supplement the dataset with NA values on a fine grid over the range of the functional domain to show how the procedure results in smooth fitted curves and pointwise confidence/prediction intervals.
## perform dynamic prediction for test subjects ## on the last 1/2 of the functional domain data_dyn <- data_test data_dyn$Y[data_dyn$argvals >= 0.5] <- NA data_dyn$waz[data_dyn$argvals >= 0.5] <- NA ## remove smoothed waz -- dyanmic predictions calculated shortly data_dyn$wazPred <- NULL set.seed(1012341) ids <- sample(unique(data_dyn$subj), 4, replace = FALSE) data_plot <- c() for(i in 1:length(ids)){ tmp <- subset(data_dyn, subj %in% ids[i]) ut_tmp <- tnew[!tnew %in% tmp$argvals & tnew > min(tmp$argvals)] n_ut <- length(ut_tmp) empty_dat <- data.frame("Y" = rep(NA,n_ut), "Ytrue" = rep(NA,n_ut), "X" = rep(NA,n_ut), "waz.true"=rep(NA,n_ut), "waz"=rep(NA,n_ut), "Male" = rep(tmp$Male[1], n_ut), "argvals"=ut_tmp, "subj"=rep(tmp$subj[1],n_ut), "include"=rep(0,n_ut)) tmp <- rbind(tmp, empty_dat) tmp <- tmp[order(tmp$argvals),] data_plot <- rbind(data_plot, tmp) rm(list=c("tmp","ut_tmp","n_ut","empty_dat")) } data_dyn <- data_plot rm(list=c("data_plot")) ## get dynamic waz predictions data_dyn_waz <- data.frame("y" = data_dyn$waz, "subj" = data_dyn$subj, "argvals" = data_dyn$argvals) data_dyn$wazPred <- predict(fit.waz, newdata=data_dyn_waz)$y.pred preds <- predict(fit, newdata=data_dyn)$dynamic_predictions
par(mfrow=c(2,2),las=1) for(i in 1:length(ids)){ inx <- which(data_dyn$subj==ids[i]) inx2 <-which(data_test$subj==ids[i]) yl <- range(c(preds$fitted.values$y.pred[inx] + rep(c(1,-1),each=length(inx))*1.96*preds$fitted.values$se.fit.p[inx], data_test$Y[inx2])) plot(preds$data$argvals[inx], preds$fitted.values$y.pred[inx],type='l', main = paste("Subject",i),xlab="Functional Domain", ylab="Response", xlim=c(0,1), ylim=yl) lines(preds$data$argvals[inx], lty=2, preds$fitted.values$y.pred[inx] - 1.96*preds$fitted.values$se.fit[inx],col='blue') lines(preds$data$argvals[inx], lty=2, preds$fitted.values$y.pred[inx] + 1.96*preds$fitted.values$se.fit[inx],col='blue') lines(preds$data$argvals[inx], lty=2, preds$fitted.values$y.pred[inx] - 1.96*preds$fitted.values$se.fit.p[inx],col='red') lines(preds$data$argvals[inx], lty=2, preds$fitted.values$y.pred[inx] + 1.96*preds$fitted.values$se.fit.p[inx],col='red') axis(1,0.5,labels=expression(t[m])) points(data_test$argvals[inx2],data_test$Y[inx2]) abline(v=0.5,col='grey',lty=2) if(i == 4){ legend("top",c("Observed Data","fcr() Prediction","95% Confidence Interval","95% Prediction Interval"), col=c("black","black","blue","red"),bty="n",pch=c(1,NA,NA,NA), lty = c(NA,1,2,2)) } }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.