The fctutils
package provides a comprehensive suite of utilities for advanced manipulation and analysis of factor vectors in R. It offers tools for splitting, combining, reordering, filtering, and transforming factor levels based on various criteria. Designed to enhance the handling of categorical data, fctutils
simplifies complex factor operations, making it easier to preprocess and analyze data in R.
Key Features:
Install the package with its dependencies and load it for usage in R. ``` {r install, eval = FALSE} library(devtools) # Load the devtools package install_github("guokai8/fctutils") # Install the package
## 2. Useful functions ### 2.1 Ordering and Sorting Factors _ft_pos_ Reorders the levels of a factor vector based on the characters at specified positions within the factor levels. ```r library(fctutils) factor_vec <- factor(c('Apple', 'banana', 'Cherry', 'date', 'Fig', 'grape')) # Reorder based on positions 1 and 3, case-insensitive ft_pos(factor_vec, positions = c(1, 3)) # Reorder based on positions 3, case-insensitive, inplace = TRUE ft_pos(factor_vec, positions = 3, inplace = TRUE) # Reorder in decreasing order, case-sensitive ft_pos(factor_vec, positions = 1:2, case = TRUE, decreasing = TRUE)
ft_count Reorders the levels of a factor vector based on the count of each level in the data.
factor_vec <- factor(c('apple', 'banana', 'apple', 'cherry', 'banana', 'banana', 'date')) # Reorder levels by decreasing count ft_count(factor_vec) # Reorder levels by increasing count ft_count(factor_vec, decreasing = FALSE)
ft_sub Reorders the levels of a factor vector based on substrings extracted from the factor levels.
factor_vec <- factor(c('Apple', 'banana', 'Cherry', 'date', 'Fig', 'grape')) # Reorder based on substring from position 2 to 4 ft_sub(factor_vec, start_pos = 2, end_pos = 4) # Reorder from position 3 to end, case-sensitive ft_sub(factor_vec, start_pos = 3, case = TRUE)
ft_freq Reorders the levels of a factor vector based on the total frequency of characters appearing in the vector.
factor_vec <- factor(c('apple', 'banana', 'cherry', 'date', 'banana', 'apple', 'fig')) # Reorder levels based on total character frequency ft_freq(factor_vec) # Reorder levels, case-sensitive factor_vec_case <- factor(c('Apple', 'banana', 'Cherry', 'date', 'banana', 'apple', 'Fig')) ft_freq(factor_vec_case, case = TRUE)
ft_char_freq Reorders the levels of a factor vector based on the frequency of characters at specified positions within the data.
factor_vec <- factor(c('apple', 'banana', 'apricot', 'cherry', 'banana', 'banana', 'date')) # Reorder based on characters at positions 1 and 2 ft_char_freq(factor_vec, positions = 1:2) # Reorder, case-sensitive, decreasing order ft_char_freq(factor_vec, positions = c(1, 3), case = TRUE)
ft_substr_freq Reorders the levels of a factor vector based on the frequency of substrings extracted from the data.
factor_vec <- factor(c('apple', 'banana', 'apricot', 'cherry', 'banana', 'banana', 'date')) ft_substr_freq(factor_vec, start_pos = 2, end_pos=3)
ft_regex_freq Reorders the levels of a factor vector based on the frequency of substrings matching a regular expression.
factor_vec <- factor(c('apple', 'banana', 'apricot', 'cherry', 'blueberry', 'blackberry', 'date')) # Reorder based on pattern matching 'a' ft_regex_freq(factor_vec, pattern = 'a') # Reorder with case-sensitive matching ft_regex_freq(factor_vec, pattern = '^[A-Z]', case = TRUE)
ft_split Splits the levels of a factor vector using specified patterns or positions and reorders based on specified parts or criteria.
# Example factor vector with patterns factor_vec <- factor(c('item1-sub1', 'atem2_aub2', 'item3|sub3', 'item1-sub4')) # Split by patterns '-', '_', or '|' and reorder based on the first part ft_split(factor_vec, split_pattern = c('-', '_', '\\|'), part = 1) # Use the second pattern '_' for splitting ft_split(factor_vec, split_pattern = c('-', '_', '\\|'), use_pattern = 2, part = 2) # Reorder based on character frequencies in the specified part ft_split(factor_vec, split_pattern = '-', part = 2, char_freq = TRUE)
ft_len Reorders the levels of a factor vector based on the character length of each level.
factor_vec <- factor(c('apple', 'banana', 'cherry', 'date')) # Sort levels by length ft_len(factor_vec)
ft_sort Sorts the levels of a factor vector based on the values of another vector or a column from a data frame. Handles cases where the sorting vector may contain NA
s.
factor_vec <- factor(c('apple', 'banana', 'cherry', 'date')) by_vec <- c(2, 3, 1, NA) ft_sort(factor_vec, by = by_vec) # Example using a data frame column data <- data.frame( Category = factor(c('apple', 'banana', 'cherry', 'date')), Value = c(2, 3, 1, NA) ) ft_sort(data$Category, by = data$Value)
ft_sort_custom Reorders the levels of a factor vector based on a custom function applied to each level.
factor_vec <- factor(c('apple', 'banana', 'cherry')) # Sort levels by reverse alphabetical order ft_sort_custom(factor_vec, function(x) -rank(x)) # Sort levels by length of the level name ft_sort_custom(factor_vec, function(x) nchar(x))
ft_replace Replaces a specified level in a factor vector with a new level. If a position is provided, the new level is inserted at the specified position among the levels; otherwise, the original level order is preserved.
factor_vec <- factor(c('apple', 'banana', 'cherry', 'date', 'fig', 'grape')) # replace 'banana' as 'blueberry', and keep original order ft_replace(factor_vec, old_level = 'banana', new_level = 'blueberry') # replace 'banana' as 'blueberry' ft_replace(factor_vec, old_level = 'banana', new_level = 'blueberry', position = 2)
ft_replace_pattern Replaces parts of the factor levels that match a specified pattern with a new string.
factor_vec <- factor(c('apple_pie', 'banana_bread', 'cherry_cake')) # Replace '_pie', '_bread', '_cake' with '_dessert' ft_replace_pattern(factor_vec, pattern = '_.*', replacement = '_dessert')
ft_filter_freq Filters out factor levels that occur less than a specified frequency threshold and recalculates character frequencies excluding the removed levels. Offers options to handle NA values and returns additional information.
factor_vec <- factor(c('apple', 'banana', 'cherry', 'date', 'banana', 'apple', 'fig', NA)) # Filter levels occurring less than 2 times and reorder by character frequency ft_filter_freq(factor_vec, min_freq = 2) # Filter levels, remove NA values, and return additional information result <- ft_filter_freq(factor_vec, min_freq = 2, na.rm = TRUE, return_info = TRUE) result$filtered_factor result$removed_levels result$char_freq_table
ft_filter_pos Removes factor levels where a specified character appears at specified positions within the levels.
factor_vec <- factor(c('apple', 'banana', 'apricot', 'cherry', 'date', 'fig', 'grape')) # Remove levels where 'a' appears at position 1 ft_filter_pos(factor_vec, positions = 1, char = 'a') # Remove levels where 'e' appears at positions 2 or 3 ft_filter_pos(factor_vec, positions = c(2, 3), char = 'e') # Case-sensitive removal factor_vec_case <- factor(c('Apple', 'banana', 'Apricot', 'Cherry', 'Date', 'Fig', 'grape')) ft_filter_pos(factor_vec_case, positions = 1, char = 'A', case = TRUE)
ft_remove_levels Removes specified levels from a factor vector, keeping the remaining levels and their order unchanged.
factor_vec <- factor(c('apple', 'banana', 'cherry', 'date', 'fig', 'grape')) # Remove levels 'banana' and 'date' ft_remove_levels(factor_vec, levels_to_remove = c('banana', 'date'))
ft_filter_func Removes levels from a factor vector based on a user-defined function.
factor_vec <- factor(c('apple', 'banana', 'cherry', 'date')) # Remove levels that start with 'b' ft_filter_func(factor_vec, function(x) !grepl('^b', x))
ft_merge_similar Merges levels of a factor that are similar based on string distance.
factor_vec <- factor(c('apple', 'appel', 'banana', 'bananna', 'cherry')) # Merge similar levels ft_merge_similar(factor_vec, max_distance = 1)
ft_concat Combines multiple factor vectors into a single factor, unifying the levels.
factor_vec1 <- factor(c('apple', 'banana')) factor_vec2 <- factor(c('cherry', 'date')) # Concatenate factors concatenated_factor <- ft_concat(factor_vec1, factor_vec2) levels(concatenated_factor)
ft_combine Combines two vectors, which may be of unequal lengths, into a factor vector and sorts based on the levels of either the first or second vector.
vector1 <- c('apple', 'banana', 'cherry') vector2 <- c('date', 'fig', 'grape', 'honeydew') # Combine and sort based on vector1 levels ft_combine(vector1, vector2, sort_by = 1) # Combine and sort based on vector2 levels ft_combine(vector1, vector2, sort_by = 2)
ft_insert Inserts one or more new levels into a factor vector immediately after specified target levels. Targets can be identified by exact matches, positions, or pattern-based matching. Supports case sensitivity and handling of \code{NA} values. Can handle multiple insertions and maintains the original order of other levels. If a new level already exists in the factor and \code{allow_duplicates} is \code{FALSE}, it is moved to the desired position without duplication. If \code{allow_duplicates} is \code{TRUE}, unique duplicates are created.
factor_vec <- factor(c('apple', 'banana', 'cherry', 'date', 'fig', 'grape')) ft_insert(factor_vec, insert = 'date', target = 'banana', inplace = TRUE) ft_insert(factor_vec, insert = c('date', 'grape'), positions = c(2, 4)) ft_insert(factor_vec, insert = 'honeydew', pattern = '^c') factor_vec_na <- factor(c('apple', NA, 'banana', 'cherry', NA, 'date')) ft_insert(factor_vec_na, insert = 'lychee', insert_after_na = TRUE)
ft_intersect Combines multiple factor vectors and returns a factor vector containing only the levels common to all.
factor_vec1 <- factor(c('apple', 'banana', 'cherry')) factor_vec2 <- factor(c('banana', 'date', 'cherry')) factor_vec3 <- factor(c('banana', 'cherry', 'fig')) # Get intersection of levels ft_intersect(factor_vec1, factor_vec2, factor_vec3)
ft_union Combines multiple factor vectors and returns a factor vector containing all unique levels.
factor_vec1 <- factor(c('apple', 'banana')) factor_vec2 <- factor(c('banana', 'cherry')) factor_vec3 <- factor(c('date', 'fig')) # Get union of levels ft_union(factor_vec1, factor_vec2, factor_vec3)
ft_reorder_within Reorders the levels of a factor vector within groups defined by another factor vector.
data <- data.frame( item = factor(c('A', 'B', 'C', 'D', 'E', 'F')), group = factor(c('G1', 'G1', 'G1', 'G2', 'G2', 'G2')), value = c(10, 15, 5, 20, 25, 15) ) data <- rbind(data, data) # Reorder 'item' within 'group' by 'value' data$item <- ft_reorder_within(data$item, data$group, data$value, mean)
ft_extract Extracts substrings from the levels of a factor vector based on a regular expression pattern and creates a new factor.
factor_vec <- factor(c('item123', 'item456', 'item789')) # Extract numeric part ft_extract(factor_vec, pattern = '\\d+') # Extract with capturing group factor_vec <- factor(c('apple: red', 'banana: yellow', 'cherry: red')) ft_extract(factor_vec, pattern = '^(\\w+):', capture_group = 1)
ft_pad_levels Pads the levels of a factor vector with leading characters to achieve a specified width.
# Example factor vector factor_vec <- factor(c('A', 'B', 'C', 'D')) # Pad levels to width 4 using '0' as padding character padded_factor <- ft_pad_levels(factor_vec, width = 4, pad_char = '0') print(levels(padded_factor)) # Output: "000A" "000B" "000C" "000D" # Pad levels to width 6 using '%A' as padding string padded_factor <- ft_pad_levels(factor_vec, width = 6, pad_char = '%A') print(levels(padded_factor)) # Output: "%%A%A" "%%A%B" "%%A%C" "%%A%D"
ft_level_stats Computes statistical summaries for each level of a factor vector based on associated numeric data. (group_by and summarize).
ft_pattern_replace Replaces substrings in factor levels that match a pattern with a replacement string.
ft_impute Replaces \code{NA} values in a factor vector using specified imputation methods.
ft_unique_comb Generates a new factor where each level represents a unique combination of levels from the input factors.
ft_map_func Transforms factor levels by applying a function that can include complex logic.
ft_collapse_lev Collapses specified levels of a factor into new levels based on a grouping list.
ft_duplicates Identifies duplicate levels in a factor vector and returns a logical vector indicating which elements are duplicates.
ft_dummy Generates a data frame of dummy variables (one-hot encoded) from a factor vector.
ft_replace_na Replaces \code{NA} values in a factor vector with a specified level.
ft_sample_levels Randomly selects a specified number of levels from a factor vector.
ft_apply Transforms factor levels by applying a function to each level.
ft_encode Converts the levels of a factor vector into numeric codes, optionally using a provided mapping.
The fctutils
package provides a comprehensive set of functions to efficiently manage and manipulate factor vectors in R. From ordering and sorting to replacing, filtering, merging, and beyond, these tools enhance your ability to handle categorical data with ease. The additional essential functions further extend the package's capabilities, ensuring that all common factor operations are covered.
For any questions please contact guokai8@gmail.com or submit the issues to https://github.com/guokai8/fctutils/issues
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.