View source: R/GetNormalisedSample.R
GetNormalisedSample | R Documentation |
Normalise sparse functional sample given in an FPCA object
GetNormalisedSample(fpcaObj, errorSigma = FALSE)
GetNormalizedSample(...)
fpcaObj |
An FPCA object. |
errorSigma |
Indicator to use sigma^2 error variance when normalising the data (default: FALSE) |
... |
Passed into GetNormalisedSample |
A list containing the normalised sample 'y' at times 't'
Chiou, Jeng-Min and Chen, Yu-Ting and Yang, Ya-Fang. "Multivariate Functional Principal Component Analysis: A Normalization Approach" Statistica Sinica 24 (2014): 1571-1596
set.seed(1)
n <- 100
M <- 51
pts <- seq(0, 1, length.out=M)
mu <- rep(0, length(pts))
sampDense <- MakeGPFunctionalData(n, M, mu, K=1, basisType='sin', sigma=0.01)
samp4 <- MakeFPCAInputs(tVec=sampDense$pts, yVec=sampDense$Yn)
res4E <- FPCA(samp4$Ly, samp4$Lt, list(error=TRUE))
sampN <- GetNormalisedSample(res4E, errorSigma=TRUE)
CreatePathPlot(subset=1:20, inputData=samp4, obsOnly=TRUE, showObs=FALSE)
CreatePathPlot(subset=1:20, inputData=sampN, obsOnly=TRUE, showObs=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.