Nothing
#' fitHeavyTail: Mean and Covariance Matrix Estimation under Heavy Tails
#'
#' Robust estimation methods for the mean vector, scatter matrix,
#' and covariance matrix (if it exists) from data (possibly containing NAs)
#' under multivariate heavy-tailed distributions such as angular Gaussian
#' (via Tyler's method), Cauchy, and Student's t distributions. Additionally,
#' a factor model structure can be specified for the covariance matrix. The
#' latest revision also includes the multivariate skewed t distribution.
#' The package is based on the papers: Sun, Babu, and Palomar (2014);
#' Sun, Babu, and Palomar (2015); Liu and Rubin (1995);
#' Zhou, Liu, Kumar, and Palomar (2019); Pascal, Ollila, and Palomar (2021).
#'
#'
#' @section Functions:
#' \code{\link{fit_Tyler}}, \code{\link{fit_Cauchy}}, \code{\link{fit_mvt}}, and \code{\link{fit_mvst}}.
#'
#' @section Help:
#' For a quick help see the README file:
#' \href{https://github.com/convexfi/fitHeavyTail/blob/master/README.md}{GitHub-README}.
#'
#' For more details see the vignette:
#' \href{https://CRAN.R-project.org/package=fitHeavyTail/vignettes/CovarianceEstimationHeavyTail.html}{CRAN-vignette}.
#'
#' @author Daniel P. Palomar and Rui Zhou
#'
#' @references
#' Ying Sun, Prabhu Babu, and Daniel P. Palomar, "Regularized Tyler's Scatter Estimator: Existence, Uniqueness, and Algorithms,"
#' IEEE Trans. on Signal Processing, vol. 62, no. 19, pp. 5143-5156, Oct. 2014. <https://doi.org/10.1109/TSP.2014.2348944>
#'
#' Ying Sun, Prabhu Babu, and Daniel P. Palomar, "Regularized Robust Estimation of Mean and Covariance Matrix Under Heavy-Tailed Distributions,"
#' IEEE Trans. on Signal Processing, vol. 63, no. 12, pp. 3096-3109, June 2015. <https://doi.org/10.1109/TSP.2015.2417513>
#'
#' Chuanhai Liu and Donald B. Rubin, "ML estimation of the t-distribution using EM and its extensions, ECM and ECME,"
#' Statistica Sinica (5), pp. 19-39, 1995.
#'
#' Chuanhai Liu, Donald B. Rubin, and Ying Nian Wu, "Parameter Expansion to Accelerate EM: The PX-EM Algorithm,"
#' Biometrika, Vol. 85, No. 4, pp. 755-770, Dec., 1998
#'
#' Rui Zhou, Junyan Liu, Sandeep Kumar, and Daniel P. Palomar, "Robust factor analysis parameter estimation,"
#' Lecture Notes in Computer Science (LNCS), 2019. <https://arxiv.org/abs/1909.12530>
#'
#' Esa Ollila, Daniel P. Palomar, and Frédéric Pascal, "Shrinking the Eigenvalues of M-estimators of Covariance Matrix,"
#' IEEE Trans. on Signal Processing, vol. 69, pp. 256-269, Jan. 2021. <https://doi.org/10.1109/TSP.2020.3043952>
#'
#' Frédéric Pascal, Esa Ollila, and Daniel P. Palomar, "Improved estimation of the degree of freedom parameter of
#' multivariate t-distribution," in Proc. European Signal Processing Conference (EUSIPCO), Dublin, Ireland, Aug. 23-27, 2021.
#' <https://doi.org/10.23919/EUSIPCO54536.2021.9616162>
#'
#' @docType package
#' @name fitHeavyTail-package
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.