reltest_predict: Make prediction from one model

View source: R/02b_reltest_libs.R

reltest_predictR Documentation

Make prediction from one model

Description

Make prediction from one model

Usage

reltest_predict(
  model,
  xx,
  tt,
  tt1,
  tt2,
  tt3,
  n0,
  n10,
  n20,
  n30,
  pp,
  params,
  dmgs = TRUE,
  debug = FALSE,
  aderivs = TRUE,
  unbiasedv = FALSE,
  pwm = FALSE,
  minxi = -10,
  maxxi = 10
)

Arguments

model

which distribution to test. Possibles values are "exp", "pareto_k2", "halfnorm", "unif", "norm", "norm_dmgs", "gnorm_k3", "lnorm", "lnorm_dmgs", "logis", "lst_k3", "cauchy", "gumbel", "frechet_k1", "weibull", "gev_k3", "exp_p1", "pareto_p1k2", "norm_p1", "lnorm_p1", "logis_p1", "lst_p1k3", "cauchy_p1", "gumbel_p1", "frechet_p2k1", "weibull_p2", "exp_p1k4", "norm_p12", "lst_p12k3", "gamma", "invgamma", "invgauss", "gev", "gpd_k1", "gev_p1". "gev_p12". "gev_p123".

xx

training data

tt

predictor vector

tt1

predictor vector 1

tt2

predictor vector 2

tt3

predictor vector 3

n0

index for predictor vector

n10

index for predictor vector 1

n20

index for predictor vector 2

n30

index for predictor vector 2

pp

probabilites at which to make quantile predictions

params

model parameters

dmgs

flag for whether to run dmgs calculations or not

debug

flag for turning debug messages on

aderivs

a logical for whether to use analytic derivatives (instead of numerical)

unbiasedv

a logical for whether to use the unbiased variance instead of maxlik (for the normal)

pwm

a logical for whether to use PWM instead of maxlik (for the GEV)

minxi

minimum value for EVT shape parameter

maxxi

maximum value for EVT shape parameter

Value

Two vectors


fitdistcp documentation built on June 8, 2025, 1:04 p.m.