Nothing
#' Blank function I use for setting up the man page information for the functions
#' @param vv parameters
#' @param ml_params parameters
#' @param nx length of training data
#' @param nxx length of training data
#' @param x a vector of training data values
#' @param xx a vector of training data values
#' @param t a vector or matrix of predictors
#' @param t1 a vector of predictors for the mean
#' @param t2 a vector of predictors for the sd
#' @param t3 a vector of predictors for the shape
#' @param tt a vector of predictors
#' @param tt1 a vector of predictors for the mean
#' @param tt2 a vector of predictors for the sd
#' @param tt3 a vector of predictors for the shape
#' @param tt2d a matrix of predictors (nx by 2)
#' @param tt3d a matrix of predictors (nx by 3)
#' @param t0 a single value of the predictor (specify either \code{t0} or \code{n0} but not both)
#' @param t01 a single value of the predictor (specify either \code{t01} or \code{n01} but not both)
#' @param t02 a single value of the predictor (specify either \code{t02} or \code{n02} but not both)
#' @param t03 a single value of the predictor (specify either \code{t03} or \code{n03} but not both)
#' @param t10 a single value of the predictor for the mean (specify either \code{t10} or \code{n10} but not both)
#' @param t20 a single value of the predictor for the sd (specify either \code{t20} or \code{n20} but not both)
#' @param t30 a single value of the predictor for the shape (specify either \code{t30} or \code{n30} but not both)
#' @param n0 an index for the predictor (specify either \code{t0} or \code{n0} but not both)
#' @param n10 an index for the predictor for the mean (specify either \code{t10} or \code{n10} but not both)
#' @param n20 an index for the predictor for the sd (specify either \code{t10} or \code{n10} but not both)
#' @param p a vector of probabilities at which to generate predictive quantiles
#' @param n number of random samples required
#' @param y a vector of values at which to calculate the density and distribution functions
#' @param ics initial conditions for the maximum likelihood search
#' @param ta predictor residuals
#' @param ta0 predictor residual at the point being predicted
#' @param muhat0 muhat at the point being predicted
#' @param kscale the known scale parameter
#' @param kloc the known location parameter
#' @param kshape the known shape parameter
#' @param kdf the known degrees of freedom parameter
#' @param kbeta the known beta parameter
#' @param v1 first parameter
#' @param v1hat first parameter
#' @param v1h first parameter
#' @param d1 the delta used in the numerical derivatives with respect to the parameter
#' @param fd1 the fractional delta used in the numerical derivatives with respect to the parameter
#' @param v2 second parameter
#' @param v2hat second parameter
#' @param v2h second parameter
#' @param d2 the delta used in the numerical derivatives with respect to the parameter
#' @param fd2 the fractional delta used in the numerical derivatives with respect to the parameter
#' @param v3 third parameter
#' @param v3hat third parameter
#' @param v3h third parameter
#' @param d3 the delta used in the numerical derivatives with respect to the parameter
#' @param fd3 the fractional delta used in the numerical derivatives with respect to the parameter
#' @param v4 fourth parameter
#' @param v4hat fourth parameter
#' @param v4h fourth parameter
#' @param d4 the delta used in the numerical derivatives with respect to the parameter
#' @param fd4 the fractional delta used in the numerical derivatives with respect to the parameter
#' @param v5 fifth parameter
#' @param v5hat fifth parameter
#' @param v5h fifth parameter
#' @param d5 the delta used in the numerical derivatives with respect to the parameter
#' @param v6 sixth parameter
#' @param v6hat sixth parameter
#' @param v6h sixth parameter
#' @param d6 the delta used in the numerical derivatives with respect to the parameter
#' @param minxi minimum value of shape parameter xi
#' @param maxxi maximum value of shape parameter xi
#' @param ximin minimum value of shape parameter xi
#' @param ximax maximum value of shape parameter xi
#' @param alpha a vector of values of alpha (one minus probability)
#' @param fdalpha the fractional delta used in the numerical derivatives with respect to probability, for calculating the pdf as a function of quantiles
#' @param means logical that indicates whether to return analytical estimates for the distribution means (longer runtime)
#' @param waicscores logical that indicates whether to return estimates for the waic1 and waic2 scores (longer runtime)
#' @param logscores logical that indicates whether to return leave-one-out estimates estimates of the log-score (much longer runtime)
#' @param extramodels logical that indicates whether to add three additional prediction models
#' @param pdf logical that indicates whether to return density functions evaluated at quantiles specified by input probabilities
#' @param predictordata logical that indicates whether to calculate and return predictordata
#' @param nonnegslopesonly logical that indicates whether to disallow non-negative slopes
#' @param rnonnegslopesonly logical that indicates whether to disallow non-negative slopes
#' @param aderivs logical for whether to use analytic derivatives (instead of numerical)
#' @param ymn the location parameter of the function of the predictor
#' @param slope the slope of the function of the predictor
#' @param mu the location parameter of the distribution
#' @param sigma the sigma parameter of the distribution
#' @param sigma1 first coefficient for the sigma parameter of the distribution
#' @param sigma2 second coefficient for the sigma parameter of the distribution
#' @param scale the scale parameter of the distribution
#' @param shape the shape parameter of the distribution
#' @param xi the shape parameter of the distribution
#' @param xi1 first coefficient for the shape parameter of the distribution
#' @param xi2 second coefficient for the shape parameter of the distribution
#' @param lambda the lambda parameter of the distribution
#' @param log logical for the density evaluation
#' @param mm an index for which derivative to calculate
#' @param nn an index for which derivative to calculate
#' @param rr an index for which derivative to calculate
#' @param lddi inverse observed information matrix
#' @param lddi_k2 inverse observed information matrix, fixed shape parameter
#' @param lddi_k3 inverse observed information matrix, fixed shape parameter
#' @param lddi_k4 inverse observed information matrix, fixed shape parameter
#' @param lddd third derivative of log-likelihood
#' @param lddd_k2 third derivative of log-likelihood, fixed shape parameter
#' @param lddd_k3 third derivative of log-likelihood, fixed shape parameter
#' @param lddd_k4 third derivative of log-likelihood, fixed shape parameter
#' @param lambdad derivative of the log prior
#' @param lambdad_cp derivative of the log prior
#' @param lambdad_rhp derivative of the log RHP prior
#' @param lambdad_flat derivative of the log flat prior
#' @param lambdad_rh_mle derivative of the log CRHP-MLE prior
#' @param lambdad_rh_flat derivative of the log CRHP-FLAT prior
#' @param lambdad_jp derivative of the log JP prior
#' @param lambdad_custom custom value of the derivative of the log prior
#' @param dim number of parameters
#' @param customprior a custom value for the slope of the log prior at the maxlik estimate
#' @param prior logical indicating which prior to use
#' @param params model parameters for calculating logf
#' @param yy vector of samples
#' @param pp vector of probabilities
#' @param dlogpi gradient of the log prior
#' @param debug debug flag
#' @param centering indicates whether the routine should center the data or not
#' @return No return value
#' @name manf
#' @export
manf=function(dim,vv,ml_params,nx,nxx,x,xx,t,t1,t2,t3,tt,tt1,tt2,tt3,tt2d,tt3d,
t0,t01,t02,t03,
t10,t20,t30,
n0,n10,n20,p,n,y,ics,
ta,ta0,muhat0,
v1,v1hat,v1h,d1,fd1,v2,v2hat,v2h,d2,fd2,v3,v3hat,v3h,d3,fd3,
v4,v4hat,v4h,d4,fd4,v5,v5hat,v5h,d5,v6,v6hat,v6h,d6,minxi,maxxi,ximin,ximax,fdalpha,
kscale,kloc,kshape,kdf,kbeta,alpha,
ymn,slope,mu,sigma,sigma1,sigma2,scale,shape,xi,xi1,xi2,lambda,log,
mm,nn,rr,lddi,lddi_k2,lddi_k3,lddi_k4,
lddd,lddd_k2,lddd_k3,lddd_k4,
lambdad,lambdad_cp,lambdad_rhp,lambdad_flat,lambdad_rh_mle,
lambdad_rh_flat,lambdad_jp,lambdad_custom,
means,waicscores,logscores,extramodels,pdf,predictordata,
nonnegslopesonly,rnonnegslopesonly,customprior,prior,params,
yy,pp,dlogpi,debug,centering,aderivs){}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.