Nothing
#' flevr: Flexible, Ensemble-Based Variable Selection with Potentially Missing Data
#'
#' A framework for flexible, ensemble-based variable selection using either
#' extrinsic or intrinsic variable importance. You provide
#' the data and a library of candidate algorithms for estimating the
#' conditional mean outcome given covariates; `flevr` handles the rest.
#'
#' @section Author(s):
#' \bold{Maintainer}: Brian Williamson \url{https://bdwilliamson.github.io/}
#'
#' Methodology authors:
#' \itemize{
#' \item{Brian D. Williamson}
#' \item{Ying Huang}
#' }
#'
#' @section See Also:
#' Papers:
#' \itemize{
#' \item{\url{https://arxiv.org/abs/2202.12989}}
#' }
#'
#' Other useful links:
#' \itemize{
#' \item{\url{https://bdwilliamson.github.io/flevr/}}
#' \item{\url{https://github.com/bdwilliamson/flevr}}
#' \item{Report bugs at \url{https://github.com/bdwilliamson/flevr/issues}}
#' }
#'
#' @section Imports:
#' The packages that we import either make the internal code nice
#' (dplyr, magrittr, tibble) or are directly relevant for estimating
#' variable importance (SuperLearner, caret).
#'
#' We suggest several other packages: xgboost, ranger, glmnet, kernlab, polspline
#' and quadprog allow a flexible library of candidate learners in the Super
#' Learner; stabs allows importance to be embedded within stability selection;
#' testthat and covr help with unit tests; and
#' knitr, rmarkdown,and RCurl help with the vignettes and examples.
#'
#' @docType package
#' @name flevr
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.