| predict.modeler | R Documentation | 
modelerGenerate model predictions from an object of class modeler.
This function allows for flexible prediction types, including point predictions,
area under the curve (AUC), first or second order derivatives, and functions
of the parameters.
## S3 method for class 'modeler'
predict(
  object,
  x = NULL,
  id = NULL,
  type = c("point", "auc", "fd", "sd"),
  se_interval = c("confidence", "prediction"),
  n_points = 1000,
  formula = NULL,
  metadata = FALSE,
  parallel = FALSE,
  workers = NULL,
  ...
)
| object | An object of class  | 
| x | A numeric value or vector specifying the points at which predictions
are made. For  | 
| id | Optional unique identifier to filter predictions by a specific group. Default is  | 
| type | A character string specifying the type of prediction. Default is "point". 
 | 
| se_interval | A character string specifying the type of interval for
standard error calculation. Options are  | 
| n_points | An integer specifying the number of points used to approximate
the area under the curve (AUC) when  | 
| formula | A formula specifying a function of the parameters to be estimated (e.g.,  | 
| metadata | Logical. If  | 
| parallel | Logical. If  | 
| workers | The number of parallel processes to use.  | 
| ... | Additional parameters for future functionality. | 
A data.frame containing the predicted values,
their associated standard errors, and optionally the metadata.
Johan Aparicio [aut]
library(flexFitR)
data(dt_potato)
mod_1 <- dt_potato |>
  modeler(
    x = DAP,
    y = Canopy,
    grp = Plot,
    fn = "fn_lin_plat",
    parameters = c(t1 = 45, t2 = 80, k = 0.9),
    subset = c(15, 2, 45)
  )
print(mod_1)
# Point Prediction
predict(mod_1, x = 45, type = "point", id = 2)
# AUC Prediction
predict(mod_1, x = c(0, 108), type = "auc", id = 2)
# First Derivative
predict(mod_1, x = 45, type = "fd", id = 2)
# Second Derivative
predict(mod_1, x = 45, type = "sd", id = 2)
# Function of the parameters
predict(mod_1, formula = ~ t2 - t1, id = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.