arb_hypgeom_gamma | R Documentation |
Compute the gamma function, the reciprocal gamma function, the
logarithm of the absolute value of the gamma function, the polygamma
function, or the beta function. The gamma function \Gamma(z)
is defined by
\int_{0}^{\infty} t^{z - 1} e^{-t} \text{d}t
for \Re(z) > 0
and by analytic continuation
elsewhere in the z
-plane, excluding poles at
z = 0, -1, \ldots
. The beta function B(a, b)
is defined
by
\int_{0}^{1} t^{a - 1} (1 - t)^{b - 1} \text{d}t
for \Re(a), \Re(b) > 0
and by analytic
continuation to all other (a, b)
.
arb_hypgeom_gamma(x, prec = flintPrec())
acb_hypgeom_gamma(z, prec = flintPrec())
arb_hypgeom_rgamma(x, prec = flintPrec())
acb_hypgeom_rgamma(z, prec = flintPrec())
arb_hypgeom_lgamma(x, prec = flintPrec())
acb_hypgeom_lgamma(z, prec = flintPrec())
## arb_hypgeom_polygamma(s = 0, z, prec = flintPrec())
acb_hypgeom_polygamma(s = 0, z, prec = flintPrec())
arb_hypgeom_beta(a, b, prec = flintPrec())
acb_hypgeom_beta(a, b, prec = flintPrec())
x , z , s , a , b |
numeric, complex, |
prec |
a numeric or |
acb_hypgeom_polygamma(s, z)
evaluates the polygamma function of
order s
at z
. The order s
can be any complex
number. For nonnegative integers m
, s = m
corresponds
to the derivative of order m
of the digamma function
\psi(z) = \Gamma'(z)/\Gamma(z)
. Use
acb_hypgeom_polygamma(0, z)
to evaluate the digamma function at
z
.
An arb
or acb
vector
storing function values with error bounds. Its length is the maximum
of the lengths of the arguments or zero (zero if any argument has
length zero). The arguments are recycled as necessary.
The FLINT documentation of the underlying C functions: https://flintlib.org/doc/arb_hypgeom.html, https://flintlib.org/doc/acb_hypgeom.html
NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov/5
Classes arb
and acb
;
arb_hypgeom_gamma_lower
and
arb_hypgeom_beta_lower
for the “incomplete” gamma
and beta functions.
## TODO
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.