cv.fastmds | R Documentation |
cv.fastmds
performs repeated cross-validation for a penalized restricted multidimensional scaling model.
cv.fastmds(
delta,
w = NULL,
p = 2,
q = NULL,
b = NULL,
lambda = 0,
alpha = 1,
grouped = FALSE,
NFOLDS = 10,
NREPEATS = 30,
MAXITER = 1024,
FCRIT = 1e-08,
ZCRIT = 1e-06,
error.check = FALSE,
echo = FALSE
)
delta |
an n by n symmatric and hollow matrix containing dissimilarities. |
w |
an identical sized matrix containing nonnegative weights (all ones when omitted). |
p |
dimensionality (default = 2). |
q |
independent variables (n by h). |
b |
initial regression coefficients (h by p). |
lambda |
regularization penalty parameter(s) (default = 0.0: no penalty). |
alpha |
elastic-net parameter (default = 1.0: lasso only). |
grouped |
boolean for lasso penalty (default = FALSE: ordinary lasso). |
NFOLDS |
number of folds for the k-fold cross-validation. |
NREPEATS |
number of repeats for the repeated k-fold cross-validation. |
MAXITER |
maximum number of iterations (default = 1024). |
FCRIT |
relative convergence criterion function value (default = 0.00000001). |
ZCRIT |
absolute convergence criterion coordinates (default = 0.000001). |
error.check |
extensive check validity input parameters (default = FALSE). |
echo |
print intermediate algorithm results (default = FALSE). |
mserrors mean squared errors for different values of lambda.
stderrors standard errors for mean squared errors.
varnames labels of independent row variables.
coefficients list with final h by p matrices with regression coefficients (lambda order).
lambda sorted regularization penalty parameters.
alpha elastic-net parameter (default = 1.0: lasso only).
grouped boolean for lasso penalty (default = FALSE: ordinary lasso).
de Leeuw, J., and Heiser, W. J. (1980). Multidimensional scaling with restrictions on the configuration. In P.R. Krishnaiah (Ed.), Multivariate analysis (Vol. 5, pp. 501–522). Amsterdam, The Netherlands: North-Holland Publishing Company.
Heiser,W. J. (1987a). Joint ordination of species and sites: The unfolding technique. In P. Legendre and L. Legendre (Eds.), Developments in numerical ecology (pp. 189–221). Berlin, Heidelberg: Springer-Verlag.
Busing, F.M.T.A. (2010). Advances in multidimensional unfolding. Unpublished doctoral dissertation, Leiden University, Leiden, the Netherlands.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.