Nothing
test_that("Multiscale pooling reduces held-out predictive NLL of innovations", {
skip_if_no_fmriAR()
h <- make_hierarchy(n_coarse = 4L, medium_per_coarse = 3L, fine_per_medium = 3L, vox_per_fine = 4L)
sim <- simulate_hier_ar2(h, n_train_per_run = 160L, n_test = 160L, runs_train = 2L, seed = 456)
parcels <- sim$parcels_fine
plan_fine <- fmriAR::fit_noise(Y = sim$Y_train, X = sim$X_train, parcels = parcels,
pooling = "parcel", multiscale = FALSE, p_target = 2L)
plan_ms <- fmriAR::fit_noise(Y = sim$Y_train, X = sim$X_train, parcels = parcels,
pooling = "parcel", multiscale = TRUE, ms_mode = "acvf_pooled", p_target = 2L)
w_fine <- fmriAR::whiten_apply(plan_fine, X = sim$X_test, Y = sim$Y_test, run_starts = sim$run_starts_test0)
w_ms <- fmriAR::whiten_apply(plan_ms, X = sim$X_test, Y = sim$Y_test, run_starts = sim$run_starts_test0)
nll_fine <- mean(series_nll(w_fine$Y))
nll_ms <- mean(series_nll(w_ms$Y))
# Expect lower (better) average NLL under multiscale
expect_lt(nll_ms, nll_fine - 0.5)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.