fnets.var | R Documentation |
l1
-regularised Yule-Walker estimation for VAR processesEstimates the VAR parameter matrices via l1
-regularised Yule-Walker estimation
and innovation covariance matrix via constrained l1
-minimisation.
fnets.var(
x,
center = TRUE,
method = c("lasso", "ds"),
lambda = NULL,
var.order = 1,
tuning.args = list(tuning = c("cv", "bic"), n.folds = 1, penalty = NULL, path.length =
10),
do.threshold = FALSE,
n.iter = NULL,
tol = 0,
n.cores = 1
)
x |
input time series each column representing a time series variable; it is coerced into a ts object |
center |
whether to de-mean the input |
method |
a string specifying the method to be adopted for VAR process estimation; possible values are:
|
lambda |
|
var.order |
order of the VAR process; if a vector of integers is supplied, the order is chosen via |
tuning.args |
a list specifying arguments for
by default
|
do.threshold |
whether to perform adaptive thresholding of VAR parameter estimator with threshold |
n.iter |
maximum number of descent steps, by default depends on |
tol |
numerical tolerance for increases in the loss function; applicable when |
n.cores |
number of cores to use for parallel computing, see makePSOCKcluster; applicable when |
Further information can be found in Barigozzi, Cho and Owens (2024+).
a list which contains the following fields:
beta |
estimate of VAR parameter matrix; each column contains parameter estimates for the regression model for a given variable |
Gamma |
estimate of the innovation covariance matrix |
lambda |
|
var.order |
VAR order |
mean.x |
if |
Barigozzi, M., Cho, H. & Owens, D. (2024+) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. Journal of Business & Economic Statistics (to appear).
Owens, D., Cho, H. & Barigozzi, M. (2024+) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling. The R Journal (to appear).
library(fnets)
set.seed(123)
n <- 500
p <- 50
idio <- sim.var(n, p)
x <- idio$data
fv <- fnets.var(x,
n.cores = 2
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.