knitr::opts_chunk$set( collapse = TRUE, eval = TRUE, echo = TRUE, comment = "#>", dpi = 120, fig.align = "center", out.width = "80%" )
The package forcis
provides a lot of functions to filter, reshape, and select FORCIS data. This vignette shows how to use these functions. With the exception of select_taxonomy()
, all functions presented in this vignette are optional and depend on your research questions. You can filter data by species, time range, ocean, etc.
First, let's import the required packages.
library(forcis)
Before proceeding, let's download the latest version of the FORCIS database.
# Create a data/ folder ---- dir.create("data") # Download latest version of the database ---- download_forcis_db(path = "data", version = NULL)
The vignette will use the plankton nets data of the FORCIS database. Let's import the latest release of the data.
file_name <- system.file( file.path("extdata", "FORCIS_net_sample.csv"), package = "forcis" ) net_data <- read.csv(file_name)
# Import net data ---- net_data <- read_plankton_nets_data(path = "data")
NB: In this vignette, we use a subset of the plankton nets data, not the whole dataset.
The FORCIS database provides three different taxonomies:
OT
: original taxonomy, i.e. the initial list of species names and attributes (e.g., shell pigmentation, coiling direction) as reported in various datasets and studies.VT
: validated taxonomy, i.e. a refined version of the original taxonomy that resolves issues of synonymy (different names for the same taxon) and shifting taxonomic concepts.LT
: lumped taxonomy, i.e. a simplified version of the validated taxonomy. It merges taxa that are difficult to distinguish across datasets (morphospecies), ensuring consistency and comparability in broader analyses. See the associated data paper for further information.
After importing the data and before going any further, the next step involves choosing the taxonomic level for the analyses. This is mandatory to avoid duplicated records.
Let's use the function select_taxonomy()
to select the VT taxonomy (validated taxonomy):
# Select taxonomy ---- net_data_vt <- net_data |> select_taxonomy(taxonomy = "VT") net_data_vt
Because FORCIS data contain more than 100 columns, the function select_forcis_columns()
can be used to lighten the data to easily handle it and to speed up some computations.
By default, only required columns listed in get_required_columns()
(required by some functions of the package like compute_*()
and plot_*()
) and species columns will be kept.
# Remove not required columns (optional) ---- net_data_vt <- net_data_vt |> select_forcis_columns() net_data_vt
You can also use the argument cols
to keep additional columns.
The filter_by_*()
functions are optional and their use depends on your research questions.
The filter_by_month()
function filters observations based on the month of sampling. It requires two arguments: the data and a numeric vector with values between 1 and 12.
# Filter data by sampling month ---- net_data_vt_july_aug <- net_data_vt |> filter_by_month(months = 7:8) # Number of original records ---- nrow(net_data_vt) # Number of filtered records ---- nrow(net_data_vt_july_aug)
The filter_by_year()
function filters observations based on the year of sampling. It requires two arguments: the data and a numeric vector with the years of interest.
# Filter data by sampling year ---- net_data_vt_9020 <- net_data_vt |> filter_by_year(years = 1990:2020) # Number of original records ---- nrow(net_data_vt) # Number of filtered records ---- nrow(net_data_vt_9020)
The function filter_by_bbox()
can be used to filter FORCIS data by a spatial bounding box (argument bbox
).
Let's filter the plankton net data by a spatial rectangle located in the Indian ocean.
# Filter by spatial bounding box ---- net_data_vt_bbox <- net_data_vt |> filter_by_bbox(bbox = c(45, -61, 82, -24)) # Number of original records ---- nrow(net_data_vt) # Number of filtered records ---- nrow(net_data_vt_bbox)
Note that the argument bbox
can be either an object of class bbox
(package sf
) or a vector of four numeric values defining a square bounding box. If a vector of numeric values is provided, coordinates must be defined in the system WGS 84 (epsg=4326
).
Let's check the spatial extent by converting these two tibbles
into spatial layers (sf
objects) with the function data_to_sf()
.
# Filter by spatial bounding box ---- net_data_vt_sf <- net_data_vt |> data_to_sf() net_data_vt_bbox_sf <- net_data_vt_bbox |> data_to_sf() # Original spatial extent ---- sf::st_bbox(net_data_vt_sf) # Spatial extent of filtered records ---- sf::st_bbox(net_data_vt_bbox_sf)
The function filter_by_ocean()
can be used to filter FORCIS data by one or several oceans (argument ocean
).
Let's filter the plankton net data located in the Indian ocean.
# Filter by ocean name ---- net_data_vt_indian <- net_data_vt |> filter_by_ocean(ocean = "Indian Ocean") # Number of original records ---- nrow(net_data_vt) # Number of filtered records ---- nrow(net_data_vt_indian)
Use the function get_ocean_names()
to retrieve the name of World oceans according to the IHO Sea Areas dataset version 3 (used in this package).
# Get ocean names ---- get_ocean_names()
The function filter_by_polygon()
can be used to filter FORCIS data a spatial polygon (argument polygon
).
Let's filter the plankton net data by a spatial polygon defining boundaries of the Indian ocean.
# Import spatial polygon ---- file_name <- system.file( file.path("extdata", "IHO_Indian_ocean_polygon.gpkg"), package = "forcis" ) indian_ocean <- sf::st_read(file_name, quiet = TRUE) # Filter by polygon ---- net_data_vt_poly <- net_data_vt |> filter_by_polygon(polygon = indian_ocean) # Number of original records ---- nrow(net_data_vt) # Number of filtered records ---- nrow(net_data_vt_poly)
The filter_by_species()
function allows users to filter FORCIS data for one or more species.
It takes a data.frame
(or a tibble
) and a vector of species names (argument species
).
Let's subset plankton net data to only keep only two species: G. glutinata and C. nitida.
# Filter by species ---- net_data_vt_glutinata_nitida <- net_data_vt |> filter_by_species(species = c("g_glutinata_VT", "c_nitida_VT")) # Dimensions of original data ---- dim(net_data_vt) # Dimensions of filtered data ---- dim(net_data_vt_glutinata_nitida)
Important: The filter_by_species()
function does not remove rows (samples) but columns: it removes other species columns. To only keep samples where these two species have been detected, we can use:
# Keep samples with positive counts ---- net_data_vt_glutinata_nitida <- net_data_vt_glutinata_nitida |> dplyr::filter(g_glutinata_VT > 0 | c_nitida_VT > 0) # Number of filtered records ---- nrow(net_data_vt_glutinata_nitida)
The convert_to_long_format()
function converts FORCIS data into a long format.
# Convert to long format ---- net_data_long <- convert_to_long_format(net_data) # Dimensions of original data ---- dim(net_data) # Dimensions of reshaped data ---- dim(net_data_long)
Two columns have been created: taxa
(taxon names) and counts
(taxon counts).
# Column names ---- colnames(net_data_long)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.