Provides optimized ‘C++’ code for computing the partial Receiver Operating Characteristic (ROC) test used in niche and species distribution modeling. The implementation follows Peterson et al. (2008) . Parallelization via ‘OpenMP’ was implemented with assistance from the ‘DeepSeek’ Artificial Intelligence Assistant (https://www.deepseek.com/).
You can install the development version of fpROC from GitHub with:
# install.packages("pak")
pak::pak("luismurao/fpROC")
The package can work with numerical vectors and terra
SpatRaster
objects.
An example using numerical data
set.seed(999)
# With numeric vectors
test_data <- rnorm(100)
pred_data <- rnorm(100)
result <- fpROC::auc_metrics(test_prediction = test_data, prediction = pred_data)
An example using terra
SpatRaster objects.
set.seed(999)
# With SpatRaster
library(terra)
#> terra 1.8.54
r <- terra::rast(ncol=10, nrow=10)
values(r) <- rnorm(terra::ncell(r))
result <- fpROC::auc_metrics(test_prediction = test_data, prediction = r)
CONACYT Ciencia de Frontera CF-2023-I-1156. Laboratorio Nacional de Biología del Cambio Climático, SECIHTI, México. To PAPIIT-UNAM IA202824 and PAPIIT-UNAM IA203922.RGC-D thanks the Dirección General de Asuntos del Personal Académico (DGAPA) from the UNAM, and the Secretaría de Ciencia, Humanidades, Tecnología e Innovación for her postdoctoral scholarship.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.