Description Usage Arguments Value Examples
Kuchar, Jaroslav et al. “Outlier (Anomaly) Detection Modelling in PMML.” RuleML+RR (2017).(http://ceur-ws.org/Vol-1875/paper9.pdf)
1 | generatePMML(model, dataFrame = NULL, topN = NULL)
|
model |
outlier model |
dataFrame |
frame for labeling |
topN |
limit number of outliers in the output |
pmml model
1 2 3 4 5 6 7 8 | ## Not run:
library("fpmoutliers")
dataFrame <- read.csv(
system.file("extdata", "fp-outlier-customer-data.csv", package = "fpmoutliers"))
model <- FPI(dataFrame, minSupport = 0.001)
generatePMML(model, dataFrame)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.