Description Usage Arguments Details Value Author(s) Examples
Train data with perceptron algorithm
1 | perceptrain(S, y, alpha_k = 1, endcost = 0)
|
S |
Each row represents a data points with last column equal to 1; S=[X,1] |
y |
Class label for data points in S |
alpha_k |
The speed of converge |
endcost |
The termination condition of cost function |
S is especially designed for perceptron.
For more information fakedata
z |
Normal vector of a hyperplane |
Z_history |
Trajactory of normal vector of a hyperplane |
NumofIteration |
Number of iterations for algorithm |
Xiaoyao Yang
1 2 3 4 5 | set.seed(1024)
z <- runif(n=3)
mydata <- fakedata(w=z,n=100)
r <- perceptrain(S=mydata$S,y=mydata$y,alpha_k=1,endcost=0)
r
|
$z
[1] 19.00000 14.08172 56.54584
$Z_history
[,1] [,2] [,3]
z 1 0.4335301 -0.2182004
z -47 8.7424575 52.7355557
z -4 9.7415032 60.6371789
z 15 17.4914799 56.9740857
z 16 16.6390402 56.8670250
z 17 15.7866006 56.7599643
z 18 14.9341609 56.6529036
z 19 14.0817213 56.5458429
$NumofIteration
[1] 8
attr(,"class")
[1] "pt"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.