| fsEnsemble | R Documentation |
fsEnsemble implements methods for ensemble learning of features for multivariate time series
fsEnsemble(feature.sets, threshold, method = c("ranking", "majority"))
feature.sets |
a list of matrixes that contains weights for features, estimated by several feature selection algorithms (base learners) |
threshold |
the required sparsity of the resulting feature set |
method |
a ensemble learning algorithm. Implemented algorithms:
|
returns a binary feature matrix. Columns correpond to components of the time series; rows correspond to lags.
Pes, B., 2019. Ensemble feature selection for high-dimensional data: a stability analysis across multiple domains. Neural Computing and Applications. https://doi.org/10.1007/s00521-019-04082-3
# Load traffic data
data(traffic.mini)
# Scaling is sometimes useful for feature selection
# Exclude the first column - it contains timestamps
data <- scale(traffic.mini$data[,-1])
mIndep<-fsMTS(data, max.lag=3, method="ownlags")
mCCF<-fsMTS(data, max.lag=3, method="CCF")
mDistance<-fsMTS(data, max.lag=3, method="distance", shortest = traffic.mini$shortest, step = 5)
mGLASSO<-fsMTS(data, max.lag=3,method="GLASSO", rho = 0.05)
mLARS<-fsMTS(data, max.lag=3,method="LARS")
mRF<-fsMTS(data, max.lag=3,method="RF")
mMI<-fsMTS(data, max.lag=3,method="MI")
mlist <- list(Independent = mIndep,
Distance = mDistance,
CCF = mCCF,
GLASSO = mGLASSO,
LARS = mLARS,
RF = mRF,
MI = mMI)
th<-0.30
mlist[["EnsembleRank"]] <- fsEnsemble(mlist, threshold = th, method="ranking")
mlist[["EnsembleMajV"]] <- fsEnsemble(mlist, threshold = th, method="majority")
(msimilarity <- fsSimilarityMatrix(mlist,threshold = th, method="Kuncheva"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.