| RoAMFEWMA_PhaseI | R Documentation |
It performs Phase I of the Robust Adaptive Multivariate Functional EWMA control chart (RoAMFEWMA). The procedure combines:
Functional cellwise outlier detection via
functional_filter,
Robust Multivariate Functional Data Imputation (RoMFDI) via
RoMFDI,
Casewise outliers detection via RoMFCC
(RoMFCC_PhaseI_casewise and
RoMFCC_PhaseII_casewise),
on the imputed Phase I data,
AMFEWMA Phase I calibration (AMFEWMA_PhaseI)
on cellwise and casewise clean data.
The resulting object can be directly used as mod_1 argument
in AMFEWMA_PhaseII
RoAMFEWMA_PhaseI(
mfdobj,
mfdobj_tuning,
functional_filter_par = list(filter = TRUE),
imputation_par = list(method_imputation = "RoMFDI", n_dataset = 1),
verbose = FALSE
)
mfdobj |
A multivariate functional data object of class |
mfdobj_tuning |
A multivariate functional data object of class |
functional_filter_par |
A list with an argument |
imputation_par |
A list with an argument |
verbose |
If TRUE, it prints messages about the steps of the algorithm. Default is FALSE. |
Among the multiple imputed datasets, the first one is used to build the cleaned training and tuning sets for AMFEWMA.
A list of the following elements:
mod_1 object returned by AMFEWMA_PhaseI, see the value
of AMFEWMA_PhaseI for a full description of its component;
mfd_clean_training training data after complete cleaning,
containing no outliers at either cellwise or casewise;
mfd_clean_tuning tuning data after complete cleaning,
containing no outliers at either cellwise or casewise;
mfd_all_clean full Phase I clean data (training + tuning);
idx_casewise_outliers indices of observations indetified as
casewise outliers by RoMFCC Phase II;
ff_training training set after the functional filter;
ff_tuning tuning set after the functional filter;
X_imp_training_1 first imputation of the training set
after RoMFDI
X_imp_tuning_1 first imputation of the tuning set
after RoMFDI
X_all_imputed training + tuning data after robust multivariate
functional imputation;
mod_RoMFCC_phaseI_casewise object returned by RoMFCC_PhaseI,
see the value of RoMFCC_PhaseI_casewise for a full description
of its component;
mod_RoMFCC_phaseII_casewise object returned by RoMFCC_PhaseII,
see the value of RoMFCC_PhaseII_casewise for a full
description of its component;
Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control Chart. Technometrics, 66(4):531–547, doi:10.1080/00401706.2024.2327346.
Capezza, C., Capizzi, G., Centofanti, F., Lepore, A., Palumbo, B. (2025) An Adaptive Multivariate Functional EWMA Control Chart. Journal of Quality Technology, 57(1):1–15, doi:https://doi.org/10.1080/00224065.2024.2383674.
## Not run:
set.seed(0)
dat_phaseI <- simulate_data_RoMFCC(p_cellwise = 0.05,
p_casewise = 0.05,
outlier = "outlier_E",
M_outlier_cell = 0.03,
M_outlier_case = 0.01,
max_n_cellwise = 10)
dat_phaseII <- simulate_data_RoMFCC(OC = "OC_E",
M_OC = 0.01,
which_OC = 5)
mfdobj_phaseI <- get_mfd_list(dat_phaseI$X_mat_list, n_basis = 5)
mfdobj_phaseII <- get_mfd_list(dat_phaseII$X_mat_list, n_basis = 5)
mfdobj_training_phaseI <- mfdobj_phaseI[1:333, ]
mfdobj_tuning_phaseI <- mfdobj_phaseI[334:1000, ]
out_phaseI <- RoAMFEWMA_PhaseI(mfdobj = mfdobj_training_phaseI,
mfdobj_tuning = mfdobj_tuning_phaseI)
out_phaseII <- RoAMFEWMA_PhaseII(mfdobj_2 = mfdobj_phaseII,
mod_1 = out_phaseI)
plot_control_charts(out_phaseII$cc)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.