| RoMFCC_PhaseII | R Documentation |
It calculates the Hotelling's and SPE monitoring statistics needed to plot the Robust Multivariate Functional Control Chart in Phase II.
RoMFCC_PhaseII(mfdobj_new, mod_phase1)
mfdobj_new |
A multivariate functional data object of class mfd, containing the Phase II observations to be monitored. |
mod_phase1 |
Output obtained by applying the function |
A data.frame with as many rows as the number of
multivariate functional observations in the phase II data set and
the following columns:
one id column identifying the multivariate functional observation
in the phase II data set,
one T2 column containing the Hotelling T2 statistic
calculated for all observations,
one column per each functional variable, containing its contribution to the T2 statistic,
one spe column containing the SPE statistic calculated
for all observations,
T2_lim gives the upper control limit of
the Hotelling's T2 control chart,
spe_lim gives the upper control limit of the SPE control chart
C. Capezza, F. Centofanti
Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2024) Robust Multivariate Functional Control Chart. Technometrics, 66(4):531–547, doi:10.1080/00401706.2024.2327346.
## Not run:
library(funcharts)
mfdobj <- get_mfd_list(air, n_basis = 5)
nobs <- dim(mfdobj$coefs)[2]
set.seed(0)
ids <- sample(1:nobs)
mfdobj1 <- mfdobj[ids[1:100]]
mfdobj_tuning <- mfdobj[ids[101:300]]
mfdobj2 <- mfdobj[ids[-(1:300)]]
mod_phase1 <- RoMFCC_PhaseI(mfdobj = mfdobj1,
mfdobj_tuning = mfdobj_tuning)
phase2 <- RoMFCC_PhaseII(mfdobj_new = mfdobj2,
mod_phase1 = mod_phase1)
plot_control_charts(phase2)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.